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1 Research Overview -

The research vehicle for this contract is the largest possible computer that can be conceived for the mid to
late 1990's. We call this machine an "American Resource Computer" or "ARC." We imagine this machine
to occupy several floors of a building. The nation could probably only afford one or two ARC's. The
machine will be used to solve large-scale scientific problems having both military and civihan applications.

This investigation addresses the hardware technology, software techniques, algorithms, communica-
tions, processing elements, and applications. The study is determining the plausibility (not feasibility) of
the machine. The technical challenges of such a machine serve as our guiding stimulus for the research
carried out and reported here. --

The chip technology that will be available for an ARC is consistent with the following parameters,
assuming a CMOS process with A = 0.125 microns.

Size: 10M x 10M x lom
FLOPS: 1015

Bits: 1015

Cost: S1-2 billion
Processors: 4 billion
Number of chips: 10 million
Clock: 200 MHz
Power: 100 MW (10W/chip)
Bisection bandwidth: 1016 bits/sec
Total node bandwidth: 1019 bits/sec
Componert reliability: 1 hour MTBF
System reliability: ???

Research is required to overcome the numerous hurdles to making an ARC feasible. Of the issues to
be faced, the most problematic is system reliability. A mean time to failure of 10' hours is plausible, but
significant research must be done to achie.e this god economically.

Progress in the various research arean are highlighted in the forthcoming sections.

2 Circuits

A theory for the minimization of functions with multiple-valued outputs was developed [17]. Based on this
theory, algorithms for optimum output encoding and state assignment have been devised. While encoding
problems are typically NP-hard, the empirical behavior of these exact algorithms on typical examples
indicates feasibility for medium-sized examples. Further, we believe that the exact algorithms can be used
to develop more scientific methods for heuristic state assignment.

A theoretical framework for optimum finite state machine (FSM) decomposition has been laid using
the notion of generalized prime implicants [7]. Under this framework, a uniform search strategy to find
optimum two-way or multi-way, parallel, cascade or general decompositions under arbitrary topologies is
possible. Heuristic strategies based on the exact algorithms have been developed that are computationally
efficient and produce high-quality solutions. Finally, we have used factoring algorithms and the above
strategies to optimize FSMs for performance, by decomposing a machine into smaller interacting machines
that have smaller critical path delays. Preliminary results indicate that 20% performance improvements
with 15-20% area increases are possible [28].

Work in the area of synthesis for testability of combinational circuits has targeted the synthesis of
circuits with the highest possible levels of testability. Necessary and sufficient conditions for path and
gate-delay-fault testability in arbitrary, multilevel networks have been determined [18]. Theoretical results
relating path-delay-fault and multifault testability in arbitrary networks have been shown. Based on
an understanding of the necessary conditions for delay-fault testability, synthesis procedures that have
minimal area penalties that satisfy the sufficiency conditions for robust path-delay-fault and multifault
testability have been developed [19]. In particular, it has been shown that a primarily used multilevel
logic optimization technique, namely, algebraic factorization, retains path-delay-fault testability. Robust
testing can be restrictive in some cases, therefore synthesis procedures for producing networks that are
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validatable nonrobust testable have been developed [21]. Finally, preliminary results on the multifault
testability of finite state machines have been obtained [6]. The work described above is summarized in
[20].

A breakthrough in the area of sequential test generation has been made which allows test generation
for non-scan sequential circuits with more than 1000 memory elements [23]. This algorithm exploits
register-transfer-level information effectively to generate justification and differentiation sequences for
stuck-at faults in the logic-level implementation of a sequential circuit. Micro-processors and Application-
Specific Integrated Circuits (ASICs) can be tested without the need for Scan Design constraints using this
algorithm. This algorithm achieves a 10OX speed-up over previous test generatio techniques on large
examples.

An algorithm for formally verifying the equivalence of two sequential machines described at the logic
level has been developed [24]. This strategy is based on a state differentiation algorithm - the equivalence
of two FSMs can be posed as "Is there a differentiating sequence for the reset states of the two machines?".
The algorithm can be generalized to verify hierarchical representations of sequejiiial circuits. Pipeline
latches may result in much larger State Transition Graphs that can easily be incorporated. This approach
is viable for circuits of larger size than previous approaches.

Alexaadcr lbhii has been w-rking "-ith Thcnas Kihsh, ' -, elf-terminating, digitally-controlled, and
ECL-compatible output pad driver for high speed integrated circuits. By automatically series-terminating
driven lines with their characteristic impedances, the driver realizes speed, power, and noise improvements
over conventional designs. Series termination is realized by exploiting the intrinsic series resistance of the
output drive transistors. A previous design used analog circuit techniques to control the gate voltage, and
thus the resistance, of the drive transistors, while the current design controls series resistance by using a
7-bit digital signal to vary the total width of the drive transistors. The design has not yet been fabricated,
but simulations indicate that data-transition rates in excess of 100MHz are possible.

3 Processing Elements

Anant Agarwal, Beng Hong Lim, and John Kubiatowicz have designed APRIL, a multithreaded VLSI
processor with high single-thread performance. John Kubiatowicz is coordinating its initial implemented
by modifying a SPARC processor through an LSI Logic collaboration. The ASIM simulator includes
a simulation module for the APRIL processor. The modifications to SPARC will help support rapid
context switching and efficient trap handling, and fine-grain synchronization using full-empty bits. A
multithreaded processor mitigates the negative effects of long communication and synchronization delays
in multiprocessors by overlapping these delays with computation from other processes.

Anant Agarwal evaluated the performance of multithreaded processors in large scale multiprocessors
using an analytical model. For processor parameters derived from APRIL's SPARC-based implementation,
the study showed that multithreaded processors such as APRIL can achieve over 80% efficiency with just
three threads with a 10 cycle memory delay in a cube network with base average latency of 55 cycles.

Kiyoshi Kurihara developed a new method of trace-driven performance evaluation that eliminates the
correctness problems of earlier trace-driven simulation methods. This scheme schedules the simulation to
obey synchronization constraints in the parallel program using synchronization information stored in the
trace.

The procebors of a multicomputer require the ability to switch tasks rapidly to hide transmission
latency without sacrificing single-thread performance. Peter Nuth and Bill Daily have been working on
an architecture for a named state processor that achieves this goal by explicitly binding names to all
processor registers and interleaving tasks on a microcycle basis. This mechanism combines the advantages
of multi-threading and multiple register sets for implementing fast context switches and procedure calls.
It also provides a general synchronization mechanism.

Over the past six months work has concentrated on studying methods of binding names to machine
registers. They have discovered that using a context cache significantly improves register storage utilization
over fixed register window methods and allows fast context switches between a large set of tasks. Design
studies have been carried out to assess the impact of using a register context cache on area and performance.

Scott Wills and Bill Daily have been working on a parallel architectural interface for multi-model ex-
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ecution. Most multicomputers are specialized to execute a single model of computation (e.g., datafiow,
actors or shared memory). They have identified a set of primitive mechanisms for communication, syn-
chronization and naming that arc required for all of these models of computation. They are currently
evaluating these mechanisms in terms of their implementation cost and their suitability for supporting
popular models of parallel computation.

During the reporting period they have developed an interface definition. A simulator has been con-
structed to test this interface. Several examples of model mechanisms have been demonstrated using the
interface including: shared memory (with caches), set synchronization, object name translation, and non-
resident handler support. In addition, two applications (n-body and relaxation) have been implemented on
the interface. Work is underway to specify a machine to support the interface. Several hardware require-
ments of the interface are being incorporated into this design including: low latency communication, fast
context switching, low cost synchronization, ability to exploit locality, and efficient support for sequential
code sequences.

4 Communications Topology and Routing Algorithms

Bill Dally and his group have been investigating methods for improving the performance and reliability
of multicomputer interconnection networks. Their recent work has concentrated on: virtual channel flow-
control to improve network throughput, the express cube topology to push throughput and latency to their
physical limits, and deadlock-free adaptive routing methods to perform load balancing and achieve fault
tolerance. They are also starting to investigate the architecture of generalized routers that are capable of
supporting many different topologies, routing strategies, and flow-control methods.

Bruce Maggs, Sanjeev Arora, and Tom Leighton have been studying nonblocking networks. Nonblock-
ing networks arise in a variety of applications involving communications. The most well known examples
include telephone networks, data networks, and distributed memory architectures. Although asymptoti-
cally optimal constructions were known for nonblocking networks, it was not known how to select paths for
the desired netwurk connections efficiently on-line. This past fall, they discovered the first optimal-time
algorithms for path selection in an optimal-size nonblocking network. In particular, they showed how
to route any sequence of connections and disconnections among N terminals in a multi-Benes network
with O(log N) bit-step delay. Viewed in the context of a telephone switching network, their network and
algorithm can handle any sequence of calls among N parties with O(log N) bit step delay per call (even if
many calls are made at once). Parties can hang up and call again whenever they like, and multiparty calls
can be made without affecting the performance of the algorithm. Every call still gets through in O(log N)
time. Viewed in the context of distributed memories for parallel machines, their algorithm allows any
processor to access any idle block of memory within O(log N) bit ?teps at any time, no matter what other
connections have been made previously or are being made simultaneously. Lastly, all of these results still
hold even if large numbers of switches in the network become faulty.

Prof. Leighton also made substantial progress on the design and analysis of routing algorithms for
commonly used networks such as arrays and hypercubes. For arrays, Prof. Leighton developed techniques
for analyzing the average case behavior of routing algorithms in a variety of models. Some of the results
are quite strong. For example, a variation of the greedy algorithm similar to that used in architectures
designed by Seitz and Dally is shown to route most all the messages to their destination with only constant
delay.

Bruce Magga, Bill Aiello, Tom Leighton, and Mark Newman have been studying algorithms for bit-
serial routing on a hypercube. They have developed a randomized adaptive algorithm that routes any
permutation of O(log N)-bit packets on an N-node hypercube in O(lor N) bit-steps, with high probability.
Furthermore, they have showed that any randomized oblivious algorithm requires f2(log 2 NI log log N) bit-
steps for most permutations.

Shlomo Kipnis continued his investigation of priority arbitration schemes that employ m busses to
arbitrate among n modules. His binomial arbitration scheme, which uses m = lgn + 1 busses, enables
achieving an arbitration time of t = I lg n (in units of bus-settling delay). Furthermore, his generalized
binomial arbitration scheme achieves a bus-time tradeoff of the form m = E(tn t /') between the number
of arbitration busses m and the arbitration time t, for values of I < t < ig n and Ig n < m < n. These
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schemes can be adopted with no changes to existing hardware and protocols; they merely involve selecting
a good set of priority arbitration codewords [26]. Shlomo Kipnis had applied for a patent, through the
MIT Technology Licensing Office, on these new arbitration schemes.

5 Systems Software

Anant Agarwal and his students have continued studying methods of exploiting locality for scalability in
large-scale multiprocessors. They have investigated the use of caches in providing efficient coherent shared
memory. David Chaiken has designed the cache coherence protocol specification for limited directory
and single-link chained schemes, and John Kubiatowicz is focusing on the VLSI implementation of these
protocols. The protocols have been implemented in ASIM, which is a large scale multiprocessor simulator.

Several parallel applications ha-t. been written, successfully compiled, and run on the ASIM simulator.
The simulator has been heavily instrumented and yields a wide range of useful statistics including par-
allelism profiles, communication locality histograms, cache and network statistics, processor utilization,
process length distributions, run lengths between synchronizations, etc. These execution profiles provide
feedback to the programmer and help in parallel program optimization.

ASIM now includes many new features such as a floating-point coprocessor, support for special pro-
cessor mechanisms including remote process invocation, full-empty bit synchronization with support for
arrsy- of full-empty bit data, chained directory coherence protocols, cache-only-private-data coherence
protocol, software/hardware coherence protocol interactions, and optimizations for cache and directory
data structures.

David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal evaluated the effectiveness of
caches in multiprocessorg using trace driven simulation of several large parallel applications including
Speech, SIMPLE, WEATHER, and LocusRoate. The study showed that cache-based memory systc-ns
are viable for large-scale multiprocessors, and that relatively small caches ,16K) are adequate to ensure
good performance. They showed that limited directory and chaincd coherence protocols are both memory
efficient and scalable. These simulations established some basic principles for implementing a cache-
based multiprocessor system. For example, the results demonstrated that the best overall performance of
multiprocessors will result only if software systems are optimized for caches. Several applications (e.g.,
WEATHER. SIMPLE) required new software-combining-tree structures for their barrier synchronizations.
The Speech application required identification of read-only data words for special handling.

The above study contradicted the widely held belief that large caches (say 256K-IM bytes) are manda-
tory for good performance. They found that for all their parallel benchmark applications including Speech,
SIMPLE, WEATHER, and LocusRoute, the performance of cache-based systems was virtually indistin-
guishable for cache sizes greater than 16K bytes. The reason is that individual process working sets become
smaller as parallelism at finer grain is exploited, making the cache-size-dependent miss rate component a
small fraction of the overall cache miss rate. The above result is important because small on-chip VLSI
caches can be clocked at much higher rates and are easier to implement than large off-chip caches.

David Kranz has retargeted the Orbit optimizing compiler for the APRIL processor. Kranz has also
implemented a novel method of dynamic process partitioning called Lazy Futures. The Lazy Futures
method virtually obviates the overhead associated with task creation and deletion when tasks run on the
same processor on which they were created. For example, with Lazy Futures, the sequential version of
an application runs at roughly the same speed as a single processor execution of a parallel version of the
same application.

Dan Nussbaum is working on a runtime system that optimizes locality of memory referencing through
clever scheduling methods. Enhancing communication locality is of fundamental importance if parallel
computers are to scale. Nussbaum has implemented a tree scheduler together with lazy task creation to
manage parallelism and locality. The scheduler is operational on their simulator. The tree-scheduler is
currently being augmented with support for multithreaded processor operation.

They have made several linguistic extensions to their Mul-T programming language to support static
scheduling of processes, memory allocation, and data parallel operation. They have added a dataflow I-
structure-like facility called J-structures for avoiding barrier synchronization the the overhead of Futures.
These facilities have been implemented in the Orbit compiler and the ASIM simulator by Lim and Kranz.
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Kirk Johnson's and Beng Hong Lim's initial applications efforts using this synchronization mechanism
shows significant benefits over naive barrier synchronization. For example, the Multigrid application
showed close to a factor of two improvement in speed when its Futures we-e replaced with the fine-grain
J-structures.

Gino Maa has been working on compiler methods for enhancing locality in parallel programs. The idea
is to statically partition code and allocate data structures based on minimization of non-local memory
references. The particle-in-cell (PIC) program, written originally by Olaf Lubek, has been parallelized
and ported to Mul-T. It is being examined closely as an instance of a massively data-parallel application
suitable for fine-grained architectures. Structurally, PIC consists of steps of operations which produce
successive intermediate matrices. The operations typically read from a few locations of the input matrices
and compute some locations for the output matrices, which is used as the input to some subsequent
operations. Fine-grain architectures synchronize on the individual elements instead of on entire matrices,
thereby exposing the producer-consumer parallelism. Because of the relatively trivial amount of work
involved in each of these operations (usually a sum of few products), the overhead of scheduling and
synchronization becomes prohibitively high. To reduce these and communication (i.e., improving locality)
costs, it will be beneficial to merge some of the operations together: by merging an upstream operation
with a downstream one, the intermediate matrix element can potentially be made local, eliminating BOTH
the communication and synchronization costs. By merging two peer operations which share some of their
input matrix element accesses, the amount of network traffic can be reduced again. The merging increases
the task granularity, t*is reducing the number of tasks which needs to be scheduled at runtimn and the
total scheduling overhead. The desired granularity can be adjusted to match the system size (i.e., number
of processors) and the actual cost structure of the runtime and hardware to insulate the programmer from
details of the runtime environment. Moreover, once most of the accesses to a matrix element are from
a particular task, it starts to make sense to allocate the corresponding matrix elements and tasks to the
same processor node.

Andrew Chien and Bill Daily have been working on abstraction tools for programming message-passing
multicomputers. They have developed a programming language, Concurrent Aggregates (CA), that con-
tains support for building massively concurrent data abstractions. Traditional abstraction techniques only
allow limitpe concurrency for each abstraction. This is due to the sequentializing semantics of the data
abstraction tools. Their aggregates - homogeneous collections of objects - can be used to implement data
abstractions with virtually unlimited concurrency. In addition, sequentialized data abstraction's imple-
mentations may be more efficient because programmers can explicitly control replication and consistency.

They have implemented a compiler and run-time system for Concurrent Aggregates. A large number
of application kernels have been written using this system. Their implementation compiles programs for
a message passing machine simulator. This simulator models an abstract fine-grained message passing
machine with similar executions costs to the J-machine. The Concurrent Aggregates programming system
has been distributed to several sites.

Their application kernels include multigrid relaxation algorithm, A* search, N-body interaction, and
a digital logic simulator. They have simulated program executions consisting of tens of millions of mes-
sage passing operations. Their initial simulations show that Concurrent Aggregates programs can exhibit
massive concurrency and good efficiency. Programming experience with CA has shown that their novel
data abstraction tools can reduce the complexity of programs by allowing abstractions to be used with-
out causing a reduction in concurrency. They are currently performing a more extensive evaluation -
programming and simulation - of Concurrent Aggregates programs.

6 Algorithms

Under the supervision of Charles Leiserson, Marios Papaefthymiou has been investigating efficient algo-
rithms for optimization of synchronous systems. He presented a concise mathematical characterization
of the minimum clock period of a synchronous system in terms of the minimum register-to-delay ratio
cycle in the system's graph representation. Specifically, he showed that the minimum clock period of a
system with components of arbitrary delay cannot exceed this ratio by more than the maximum delay D
of the components. These resulks led to improved algorithms for retiming of arbatrary delay systems: an



O(VI 2E Ig VWlg VD) algorithm for retiming with clock period that does not exceed the minimum by
more than D, and an O(VEIg D) algorithm for minimum clock period retiming.

Alexander Ishii has generalized his VLSI timing analysis algorithms using the notion of a "base step"
function to encapsulate assumptions about when signal values change during the operation of a circuit.
He ha- shown how various base step functions can be used to provide sufficient conditions for a circuit to
operate properly. The base step function is used to derive a "computational expansion" of the circuit from
which a collection of simple linear constraints are derived. These constraints can be efficiently checked
using standard graph algorithms. In addition, the algorithm can be adapted to determine the maximum
frequency at which a circuit can be clocked and to produce the limiting critical path.

Ishii and Leiserson have also dev-!oped a new base step function which is less pessimistic than the ones
used in previous timing verifiers, yet correctly handles timing constraints that are "cyclic" or extend across
the boundaries of multiple clock phases or cycles. If a circuit is modeled as a graph G = (V, E), where V
consists of components-latches and functional elements-and E represents intercomp nent connections,
the new base step function results in an algorithm which verifies the proper timing of a circuit in worst-case
O(IVj:EI) time and O(1V12 ) space [251.

Shlomo Kipnis finished compiling a survey paper on the problem of range queries in computational
geometry. Range queries are a fundamental problem in computational geometry with applications to
computer graphics and database retrieval systems. The survey paper identifies three general methods for
range queries in computational geonetry nnd classifies many of the recent research results into one or
more of these methods [56].

During the past six months, James K. Park has been collaborating with Alok Aggarwal, Dina Kravets,
and Sandeep Sen on a number of problems relatiag to Monge arrays. Aggarwal and Park have been
studying the use of Monge arrays in solving economic lot-size problems arising in operations research.
Aggarwal, Kravets, Park, and Sen have been investigating parallel alogorithms for searching in staircase-
Monge arrays and the conversion of PRAM algorithms for searching in Monge arrays to algorithms for
hypercubes and related interconnection networks.

Park has also been working on his doctoral thesis, tentatively titled The Monge Array - An Abstraction
and Its Applications. The thesis, a comprehensive study of Monge arrays and their applications, should
be completed by August 1990.

Tom Cormen, Charles Leiserson, and Ron Rivest have completed the textbook Introduction to Algo-
rithms. The book will be published in April 1990.

7 Applications

A database management system (DBMS) intended for the highly concurrent J-Machine system is being
formulated by John Keen and Bill Dally. It will permit many transactions to simultaneously operate on a
database. Prominent research issues are concurrency control, logging and recovery in a highly concurrent
system. A prioritorized pre-emptive locking scheme has been proposed as a suitable concurrency control
technique. A set of log processors operate in parallel to collect log fragments for updates to data and
transaction commits. Recovery from these logs is performed incrementally so that normal processing can
resume as quickly as possible after a crash. These techniques for designing a concurrent DBMS will offer
the possibility of scaling up the system hardware and software to handle transaction processing rates much
higher than those achievable with high performance expensive serial systems.

Over the past six months, Jacob White and his students have continued efforts in developing numerical
algorithms for problems related to the design of an ARC, as well as those that can effectively exploit the
ARC's capability. The emphasis is now shifting from unearthing entirely new approaches to extending
those approaches to solve wider classes of real problems and to developing solid programs others can use.
This is particularly trup of their work on capacitance calculation and mixed circuit-device simulation.
Some completely new avenues are still being investigated, particularly in the area of Monte-Carlo device
simulation and in techniques for peak power and current estimation for large digital circuits.

Three dimensional capacitance and inductance extraction has recently become important because the
dense packing of processors and memory required for high performance parallel computers require three
dimensional interconnection. A fast algorithm for computing the capacitance of a complicated 3-D ge-
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ometry of ideal conductors in a uniform dielectric has been developed and tested [44). The method is an
acceleration of the standard integral equation approach for multiconductor capacitance extraction. These
integral equation methods are slow because they lead to dense matrix problems which are typically solved
with some form of Gaussian elimination. This implies the computation grows like n 3 , where n is the num-
ber of tiles needed to accurately discretize the conductor surface charges. Professor White and his students
have developed a preconditioned conjugate-gradient iterative algorithii with a multipole approximation to
compute the iterates. This reduces the complexity of the multiconductor capacitance calculations to grow
as nm where m is the number of conductors. Their most recent efforts are in improving the implementation
of the capacitance calculation algorithm. Specifically, they have developed a faster code which includes
a novel adaptive 3-D multipole algorithm. Their future work in this subject will be to include dielectric
interfaces and then they will turn their attention to developing a multipole algorithm to accelerate the
calculation of inductances.

In the area of circuit simulation, Professor White and his st :dents have completed the development
of SIMLAB [60, 593, a fast, general purpose circuit simulation program intended to facilitate research
and which has also been used to teach Professor White's course in numerical simulation. SIMLAB is
also being used to investigate techniques for simulation of "vision circuits," which are fairly regular, but
very large analog circuits which are very expensive to simulate using programs like SPICE. Over the
past six months, vision simulation extensions have been added to SIMLAB, and the program was used to
investigate the beha;ior of a class of nonlinear smoothing and segmentation networks. In addition, several
conjugate-gradient and waveform-Newton (50] based solution algorithms have been added to SIMLAB,
and their performance was tested on resistive grid and vision circuits. Finally, they are investigating what
they hope is a very novel and very general extension to the algebraic multigrid algorithm suitable for both
serial and parallel vision circuit simulation.

Also in ci,,uit simulation, over the past few months Professor White and his colleagues have completed
a theoretical study of exponential-Fitting numerical integration algorithms [45]. They have been able
to prove several strong results that indicate the performance of recently published exponential-fitting
algorithms are, in the limit of large timesteps, identical to other well-known techniques. They have also
found through experiments that a simple and somewhat subtle modification stabilizes one of the more
unstable -- but when stable more accurate - expontential-fitting methods, and they are now trying to
prove this will always be the case.

In the area of classical device simulation, Professor White is trying to finish his work on waveform
relaxation for 2-D MOS device simulation, and the straight-forward extension to 3-D [11. 48, 49]. Current
results incicate tnat the WV K algorithm can be an order of magnitude faster than standard techniques for
transient simulation, and the code is to be improved by investigating iterative mesh refinement, improving
the matrix solution code, and adding more realistic mobility models. In addition, he and his collaborators
are investigating efficient techniques for computing terminal currents in preparation for using the simu-
lator in a mixed circuit-device simulation program. Finally, they have arranged for access to an INTEL
hypercube in order to deinonstrate w,.at they hope will be WR's strongest benefit, that of being easily
and effectively parallelized.

Although still useful for predicting terminal currents, the drift-diffusion model of electron transport
does not accurately predict the field distribution near the drain in small geometry devices. This is of
particular importance for predicting oxide breakdown due to penetration by "hot" electrons. There are
two approaches for more accurately computing the electric fields in MOS devices: one is based on adding
an energy equation to the drift-diffusion model, and the second is based on particle or Monte-Carlo
simulations.

In the first approach, an energy balance equation is solved along with the drift-diffusion equations
so that the electron temperatures are computed accurately. This combined system is numerically less
tame than the standard approach, and must be solved carefully. Professor White and his students have
developed and tested a 2-D simulator for MOS devices based on the drift-diffusion plus energy equations,
and have uncovered a source of instability in the computation when the semiconductor mobility is made
a function of the inverse of carrier temperature. Although using a very fine mesh removes this instability,
and duplicates what others have done, this makes the method computationally much more expensive.
They are currently trying to understand the cause of the instability and correct it, so that a coarse mesh
can be used and still produce accurate results.
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In the area of Monte Carlo device simulation, Professor White and his students are focussing on
transient calculations with self-consistent electric fields. Specifically, they are trying to apply the recently
developed implicit particle methods. To apply these implicit particle methods to semiconductors, they are
decomposing the field calculation into a part due to charged particles, a part due to dopant ions, and a
part due to boundaries. This allows the calculation of the electric field acting on every charged particle
in the system to be performed rapidly and accurately using fast multipole algorithms. Currently, they
have rewritten (with J. Phillips) a Silicon Monte Carlo code from the National Center for Computational
Electronics to use ensemble Monte Carlo methods and are now including the electric field calculations.

The high transistor density now possible with CMOS integrated circuits has made peak power dissipa-
tion and peak current density important design considerations. However, peak quantities in a logic circuit
are usually a function of the input vector or vector sequence applied. This makes accurate estimation of
peak quantities extremely difficult, since the number of input sequences that have to be simulated in order
to find the sequence that produces the peak is ezponentialin the number of inputs to the circuit. By using
simplified models of power and current dissipation, peak quantities - like power or current density -
can be related to maximizing gate output activity, a weighted to account for differing load capacitances
or transistor sizes. Transformations can then be derived that convert a !ogi- description of a circuit nto
a multiple-output Boolean function of the input vector or vector sequence, where each output of the
Boolean function is associated with a logic gate output transition. It then follows that to find the input
or input sequence that maximizes the quantity of interest, a weighted max-satisfiabdity problem must he
solved. For the problem of estimating peak power dissapation, algorithms for constructing the Boolean
function for dynamic CMOS circuits, s well as for static CMOS, which take into account dissipation due
to glitching, have been derived and exact and approximate algorithms for solving the associated weighted
max-satisfiability problem have been developed [22].
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APRIL: A Processor Architecture for
Multiprocessing

Anant Agarwal, Beng-Hong Lim. David Kranz, and John Kubiatowicz
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Processors in large-scale multiprocessors must be able to tolerate large communication la-
tencies and synchronization delays. This paper describes the architecture of a rapid-context-
switching processor called APRIL with support for fine-grain threads and synchronization.
APRIL achieves high single-thread performance and supports virtual dynamic threads. A
commercial RISC-based implementation of APRIL and a runtime software system that can
switch contexts in about 10 cycles is described. Measurements taken for several parallel
applicatiuns on an APRIL simulator show that the overhead for supporting parallel tasks
based on futures is reduced by a factor of two over a corresponding implementation on the
Encore Multimax. The scalability of a multiprocessor based on APRIL is explored using a
performance model. We show that the SPARC-based implementation of APRIL can achieve
close to 807 processor utilization with as few as three resident threads per processor in a
large-scale cache-based machine with an average base network latency of 55 cycles.

1 Introduction

The requirements placed on a processor in a large-scale multiprocessing environment are different
from those in a uniprocessing setting. A processor in a parallel machine must be able to tolerate
high memory latencies and handle process synchronization efficiently [3]. Further, memory
access times and synchronization overhead will increase as machines are scaled up.

Parallel applications impose processing and communication bandwidth demands on the par-
allel machine. An efficient and cost-effective machine design achieves a balance between the
processing power and the communication bandwidth the machine provides. An imbalance is
created when an underutilized processor cannot fully exploit the available network bandwidth.
When the network has bandwidth to spare, low processor utilization can result due to high
network latency. An efficient processor design for multiprocessors provides a means for hid-
ing latency. Provided that sufficient parallelism exists, a processor that rapidly switches to an
alternate thread of computation during a remote memory request can achieve high utilization.

Processor utilization also diminishes due to synchronization latency. Spin lock accesses have a
low overhead of memory requests, but busy-waiting on a synchronization event wastes processor
cycles. Synchronization mechanisms that avoid busy-waiting by means of process blocking incur
a high overhead, and are typically associated with coarse-grain objects.
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Full-empty bit synchronization [27] in a rapid context switching processor allows more effi-
cient fine-grain synchronization. This scheme associates synchronization information with ob-
jects at the granularity of a data word, allowing a low-overhead expression of maximum concur-
rency. Because the processor can rapidly switch to other threads, wasteful iterations in spin-wait
loops are interleaved with useful work from other threads. This drastically reduces the effects of
synchronization on processor utilization. Dataflow computing tries to achieve the same effects
using I-structures [4].

This paper describes the architecture of APRIL, a processor designed for large-scale multi-
processing. APRIL builds upon previous research on processors for parallel architectures such
as HEP [27], SPUR [8], MASA [11], P-RISC [21], [15], and [16]. Most of these processors
support fine-grain interleaving of instruction streams from multiple processes, but suffer from

poor single-thread performance. APRIL does not support cycle-by-cycle interleaving of threads;
instead APRIL executes instructions from a given thread until it performs a remote memory
request or fails in a synchronization attempt. The use of caches minimizes the need for remote
memory operations. We show that such coarse-grain multithreading allows a simple processor
design with context switch overheads in the range of 4-10 cycles, without significantly hurting
overall system performance (although the pipeline design is complicated by the need to handle
pipeline dependencies). In APRIL, thread scheduling is done in software, and unlimited vir-
tual dynamic threads are supported. APRIL supports full-empty bit synchronization [27], and
provides tag support for futures [12].

By taking a systems-level design approach that considers not only the processor, but also
the compiler and runtime system, we were able to migrate several non-performance-critical op-
erations into the software system, greatly simplifying the processor design. In fact, APRIL's
simplicity allows an implementation based on minor modifications to an existing RISC processor
design. We describe such an implementation based on Sun Microsystem's SPARC processor [1].
A compiler for APRIL, a runtime system, and an APRIL simulator are operational. We present
simulation results for several parallel applications on APRIL's efficiency in handling fine-grain
threads and assess the scalability of multiprocessors based on a coarse-grain multithreaded pro-
cessor using an analytical model. Our SPARC-based processor supports four hardware contexts
and can switch contexts in about 10 cycles, which yields roughly 80% processor utilization in a
system with an average base network latency of 55 cycles.

The rest of this paper is organized as follows. Section 2 overviews our multiprocessor system
architecture. The programming model is discussed in Section 3. The architecture of APRIL is
discussed in Section 4, and its instruction set is described in Section 5. A SPARC-based imple-
mentation of APRIL is detailed in 6. Section 7 discusses the implementation and performance

of the APRIL runtime system. Performance measurements of APRIL based on simulations are
presented in Section 8. We evaluate the scalability of multithreaded processors in Section 9.

2 The ALEWIFE System

APRIL is the processing element of ALEWIFE, a large-scale multiprocessor being designed at
MIT. ALEWIFE is a cache-coherent machine with distributed, globally-shared memory. Cache
coherence is maintained using a message-based directory protocol [6] over a low-dimension direct
network [24]. The directory is distributed with the processing nodes.
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ROUTER ALEWIFE MACHINE
PRO)CESSOR

------------- ------------------------- 4

ALEWIFE NODE

Figure 1: ALEWIFE node

As shown in Figure 1. each ALEWIFE node consists of a processing element, floating-point
unit. cache, main memory, cache/directory controller and a network routing switch. Multiple
nodes are connected via a direct, packet-switched network.

The controller synthesizes a global shared memory space via messages to other nodes, and
satisfies requests from other nodes directed at local memory. It maintains strong cache coher-
ence [7] for memory accesses, but provides special mechanisms for bypassing coherence when
appropriate. On exception conditions, such as cache misses and failed synchronization attempts,
the controller can choose to trap the processor or to make the processor wait. A rapid-context-
switching processor reduces the ill effects of long latency acknowledgments resulting from a
strong cache coherence protocol. To allow experimentation with other programming models,
the controller provides support for weaker forms of coherence and facilities for "nonstandard"
forms of communication, such as preemptive interprocessor interrupts and block transfers. Spe-
cial controller functions may be exploited by the runtime system through the use of APRIL
instructions.

The ALEWIFE system uses a low-dimension direct network. Such networks scale easily
and maintain high nearest-neighbor bandwidth. However, the longer expected latencies of a
low-dimension direct network over those of indirect multistage networks increase the need for
processors that can tolerate long latencies. Furthermore, the lower bandwidth of direct networks
over that of indirect networks with the same channel width introduce interesting tradeoffs in the
design of multithreaded processors. These are considered in Section 9 and in more detail in [2].

In the ALEWIFE system, a context switch occurs whenever the network must be used to
satisfy a request. A context switch can also be forced on a failed synchronization attempt. Since
caches reduce the network request rate, we can employ coarse-grain multithreading (context
switch every 50-100 cycles) instead of fine-grain multithreading (context switch every cycle).
This simplifies processor design considerably because context switches can be more expensive (4
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to 10 cycles), and it allows migration of functionality such as scheduling into runtime software.
Single-thread performance is optimized, and well-known techniques used in RISC processors for
enhancing pipeline performance can be applied [13]. Custom design of a processing element is
not required in the ALEWIFE system; indeed, we are using a modified version of a commercial
RISC processor for our first-round implementation.

3 Programming Model

Our experimental programming language for ALEWIFE is Mul-T [18], an extended version of
Scheine [23]. Mul-T's basic mechanism for generating concurrent tasks is the future construct.
The expression (future X), where X is an arbitrary expression, creates a task to evaluate X
and also creates an object known as a future to eventually hold the value of X. When created.
the future is in an unresolved, or undetermined, state. When the value of X becomes known,
the future resolves to that value, effectively mutating into the value of X and losing its identity
as a future. Concurrency arises because the expression (future X) returns the future as its
value without waiting for the future to resolve. Thus, the computation containing (future X)
can proceed concurrently with the evaluation of X. All tasks execute in a shared address-space.

The result of supplying a future as an operand of some operation depends on the nature of
the operation. Non-strict operations. such as passing a parameter to a procedure, rct-:nin: a
result from a procedure, assigning a value to a variable, and storing a value into a field of a
data structure, can use a future as easily as any other kind of value, and take no special note of
futures. Strict operations such as addition and comparison, if applied to an unresolved future,
are suspended until the future resolves and then proceed, using the value to which the future
resolved as though that had been the original operand.

The act of suspending if an object is an unresolved future and then proceeding when the
future resolves is known as touching the object. The touches that automatically occur when
strict operations are attempted are referred to as implicit touches. MUl-T also includes an
explicit touching or "strict" primitive (touch X) that touches the value of the expression X
and then returns that value.

Futures can only express control-level parallelism. In a large class of algorithms, data paral-
lelism is more appropriate. Barriers are a useful means of synchronization for such applications
on MIMD machines, but force unnecessary serialization. The same serialization occurs in SIMD
machines. Implementing data-level parallelism in a MIMD machine that allows the expression of
maximum concirrency requires cheap fine-grain synchronization associated with each data ob-
ject. We provide this support in hardware with full/empty bits. Mul-T is being augmented with
constructs for data-level parallelism. We are also extending Mul-T with primitives for software
cache coherence, placement of data, and task scheduling. As an example, the programmer can
use future-on which works just like a normal future but allows the specification of the node
on which to schedule the future. Extending Mul-T in this way allows us to experiment with
techniques for enhancing locality and to research language-level issues for programming parallel

machines.
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4 Processor Architecture

APRIL is a pipelined RISC processor extended with special mechanisms for multiprocessing.
This section overviews the architecture of APRIL focusing on the features of APRIL that support
inultithreading. fine-grain synchronization, cheap futures, and other models of computation.

4.1 Overview

The left half of Figure 2 depicts the user-visible processor state comprising four sets of general
purpose registers, and four sets of Program Counter (PC) chains and Processor State Registers
SPSR . The PC chain represents the instruction addresses corresponding to a thread, and the
PSR holds various pieces of process-specific state such as the condition codes (CCs). In this paper
the terms process. thread, context, and task are used equivalently. Each register set together
with a single PC-chain and PSR is conceptually grouped into a single entity called a task frame
(using terminology from [11]). Only one task frame is active at a given time and is designated
by a current frame pointer (FP). All register accesses are made to the active register set and
instructions are fetched using the active PC-chain. Additionally, a set of 8 global registers that
are always accessible regardless of the FP is provided.

Registers are 32 bits wide. The PSR is also a 32 bit register and can be read into and written
Irom the geerai registers. 5pecial instructions can read and write the FP register. The PC-chain
includes the Program Counter (PC) and next Program Counter (nPC) which are 32 bit registers
and are not directly accessible. The above assumes a single cycle branch delay slot. Condition
codes are set as a side effect of compute instructions. A longer branch delay might be necessary
if the branch instruction itself does a compare [9]; in this case the PC chain is correspondingly
longer. Words in memory are 32 bits wide, and have an additional synchronization bit called
the ful!/Ecmpty bit.

Use of multiple register sets on the processor, as in the HEP, allows rapid context switching.
A fast context switch is achieved by changing the frame pointer and emptying the pipeline. The
cache controller forces a context switch on the processor, typically on remote network requests,
and on certain unsuccessful full/empty bit synchronizations. APRIL implements futures using
the trap mechanism. For our proposed experimental implementation based on SPARC, which
does not have four separate PC and PSR frames, context switches are also caused through traps.
Therefore, a fast trap mechanism is essential. When a trap is signalled in APRIL, the trap state
machine lets the pipeline empty, and passes control to the trap handler. The trap hardware also
saves the PC-chain into the general registers. The trap handler executes in the same task frame
as the thread that trapped so that it can access all its registers.

4.2 Coarse-Grain Multithreading

In most processor designs to date (e.g. [11, 27, 21, 16]), multithreading has involved cycle-by-
cycle interleaving of threads. Such fine-grain multithreading has been used to hide memory
latency and also to achieve high pipeline utilization. By maintaining instructions from different
threads in the pipeline at any instant pipeline dependencies are avoided, but at the price of poor
single-thread performance.

In the ALEWIFE machine, we are primarily concerned with the large latencies associated
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with cache misses that require a network access. Good single thread performance is also im-
portant. Therefore the processor continues executing a single thread until a memory operation
involving a remote request (or an unsuccessful synchronization attempt) is encountered. The
controller forces the processor to switch to another thread, while it services the request. This
approach is called coarse-grain multithreading. Processors in message passing multicomput-
ers [2.5. 31. 10, 5] have traditionally taken this approach to allow overlapping of communication
with computation.

Context switching in APRIL is achieved by changing the frame pointer. Since APRIL has
four task frames, it can have up to four threads loaded on it. The thread that is being executed
by APRIL resides in the task frame pointed to by the FP. A context switch simply involves
letting the processor pipeline empty while saving the PC-chain and then changing the FP to
point to another task frame.

Threads in ALEWIFE live in a virtual namespace. Only a small subset of all threads can
be physically resident on the processors: these threads are called loaded threads. The remaining
threads are refered to as unloaded threads and live on various queues in memory, waiting their
turn to be loaded. In a sense, the set of task frames act like a cache on the virtual threads.
This organization is illustrated in Figure 2. The scheduler tries to choose threads from this set
of loaded threads for execution to minimize the overhead of saving and restoring threads into
memory. When control eventually passes back to the thread that suffered a remote request,
the controller should have completed servicing the request, provided the other threads ran for
enough cycles. In other words, remote memory latencies can be completely overlapped if the
product of the number of loaded threads aud the average switch time is greater than the average
time to service a request. By maximizing local cache and memory accesses, the need for context
switching reduces to once every 50 or 100 cycles, which allows us to tolerate latencies in the
range of 1.50 to 300 cycles with 4 task frames (see Section 9).

Rapid context switching is used to hide the latency encountered in several other trap events.
such as synchronization faults (or attempts to load from "empty" locations). These events can
either cause the processor to suspend execution (wait) or to take a trap. In the former case,
the controller holds the processor until the request is satisfied. This typically happens on local
memory cache misses, and on certain full/empty bit tests. If a trap is taken, the trap handling
routine can respond by:

1. spinning - immediately return from the trap and retry the trapping instruction.

2. switch spining - context switch without unloading the trapped thread.

3. blocking - unload the thread.

The above alternatives must be considered with care, for incorrect choices can create or
exacerbate starvation and thrashing problems. An extreme example of starvation is this: all
loaded threads are spinning or switch spining on an exception condition that an unloaded thread
is responsible for fulfilling. We are investigating several possible mechanisms to handle such
problems, including a special controller initiated trap on certain failed synchronization tests,
whose handler unloads the thread.

An important aspect of the ALEWIFE system is its combination of caches and multithread-
ing. While this combination is advantageous, it also creates a unique class of thrashing and
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starvation problems. For example, forward progress can be halted if a context executing on one
processor is writing to a location while a context on another processor is reading from it. These
two contexts can easily play "cache tag", since writes to a location force a context switch and
invalidation of other cached copies, while reads force a context switch and transform read-write
copies into read-only copies. Another problem involves thrashing between an instruction and its
data; a context will be blocked if it has a load instruction mapped to the same cache line as the
target of the load. These and related problems have been addressed via appropriate hardware
interlock mechanisms.

4.3 Support for Futures

Executing a Mul-T program with futures incurs two types of overhead not present in sequential
programs:

1. Strict operations must check their operands for availability before using them.

2. There is a cost associated with creating new threads.

Detection of Futures Operand checks for futures done in software imply wasted cycles on
every strict operation. Our measurements with Mul-T running on an Encore Multimax shows
that this is expensive. Even with clever compiler optimizations there is close to a factor of
two loss in performance over a purely sequential implementation (see Table 3). Our solution
employs a tagging scheme with hardware-generated traps if an operand to a strict operator is a
future. We believe that this hardware support is necessary to make futures a viable construct for
expressing parallelism. From an architectural perspective, this mechanism is similar to dynamic
type checking in Lisp. However, this mechanism is necessary even in a statically' typed language
in the presence of the dynamic futures.

APRIL uses a simple data type encoding scheme for automatically generating a trap when
operands to strict operators are futures. Implementation details are discussed in Section 6. This
obviates the need to explicitly inspect in software the operands to every compute instruction.
This is important because we do not want to hurt the efficiency of all compute instructions
because of the possibility an operand is a future.

Lazy Task Creation Little can be done to reduce the cost of task creation if future in a
program is taken as a command to create a new task. In many programs the possibility of
creating an excessive number of qine-grain tasks exists. On the other hand, given the semantics
of Mul-T, failure to create a new task could result in deadlock. These observations lead us to
the notion of lazy futures [201. With lazy futures a future expression does not create a new task,
but simply treats the expression as a procedure call, leaving behind a placeholder where the new
task could have been created. The new task is created only when some processor becomes idle
and looks for work. Thus, the user can specify the maximum possible parallelism, without the
overhead of creating all the tasks. parallel task creation is paid only for tasks that actually run
on a different processor.

Lazy futures, in a sense, are a means of dynamically partitioning programs to try to achieve
just tie right amount of parallellism.
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Lazy futures introduce a race condition between a processor looking for a new task to create
and a processor trying to avoid creating the new task by executing the future as a procedure
call. APRIL's fine-grain synchronization implements lazy futures efficiently.

4.4 Fine-grain synchronization

Besides support for lazy futures, efficient fine-grain synchronization is essential for large-scale
parallel computing. Both the dataflow and data-parallel models of computation rely heavily on
the availability of cheap fine-grain synchronization. The unnecessary serialization imposed by
barriers in MINID implementations of data-parallellism can be avoided by allowing fine-grain
word-level synchronization in data structures. The traditional testkset based synchronization
requires extra memory operations and separate data storage for the lock and for the associated
data. Busy-waiting or blocking in conventional processors waste additional processor cycles.

APRIL adopts the full/empty hit approach used in the HEP [27] to reduce both the storage
requirements and the number of memory accesses. A bit associated with each memory word
indicates the state of the word: full or empty. The load of an empty location or the store into
a full location traps the processor causing a context switch, which helps hide synchronization
delay. Traps also obviate the additional software tests of the lock in testset operations. A
simiiar mechanism is used to implement I-structures in dataflow machines [4], however APRIL
i- l'ffTrnt in that it iinplernents such synchronizations through traps handled in software.

4.5 Mechanisms for Multimodel Support

ALEWIFE is primarily an experimental shared-memory multiprocessor with strongly coherent
caches. llowover. we are considering several additional mechanisms which will permit explicit
,,na1L manent of caches and efficient use of network bandwidth. These mechanisms present dif-
ferent computational models to the programmer. In general, use of such mechanisms requires
.'intelligent" software and sophibticated compilers.

First on this list is support for explicit cache management. We have loads and stores that by-
pass the hardware coherence mechanism, and a flush operation that permits software writeback
and invalidation of cache lines. A loaded context has a fence counter that is incremented for
each dirty cache lne that is flushed and decremented for each acknowledgement from memory.
This fence counter may be examined to determine if all writebacks have completed. Such soft-
ware coherence is along the lines of that considered by Shasha and Snir [26]. Cache coherence
is an active area of research and providing an option for hardware or software cache coherence
in ALEWIFE will let us study this issue.

We are also proposing a block-transfer mechanism for efficient transfer of large blocks of
data. The block-transfer mechanism examines caches only on source and destination nodes,
bypassing hardware cache coherence. Fence counters are used for synchronization here also.

Finally, we are considering an interprocetsor-interrupt mechanisiu tIPI) which permits pre-
emptive messages to be sent to specific processors. Each IPI will have an interrupt level and
up to five words of data. IPIs offer reasonable alternatives to polling and, in conjunction with
block-transfers, form a primitive for the message-passing computational model.

Although each of these mechanisms adds complexity to our cache controller, they are easily
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Type Format Data movement Control flow
Compute op sl s2 d d - sl op s2 PC+1
Memory id type a d d - mem [a] PC+1

st type d s mem[a] - s PC+I

Branch jcond offset if cond
PC+offset
else PC+1

_jmpl offset d d- PC PC+offset

Table 1: Basic instruction set summary.

Bit 31 Bit 01 1

Fixnum 0 100o

Other 110

Cons 1110t

Future o1101

Figure 3: Data Type Encodings

implemented in the processor through 'out-of-band' instructions as discussed in Section 6.3.
Since an overriding design consideration for ALEWIFE is simplicity, we are evaluating the
utility ()f tise miechanisms carefully.

5 Instruction Set

APRIL has a basic RISC instruction set augmented with special memory instructions for
full/ernpty bit operations. multithreading, and cache support. The attraction of an imple-
inentation based on simple SPARC processor modifications has resulted in a basic SPARC-like
instruction set (11. All registers are addressed relative to a current frame pointer. Compute
instructions are 3-address register-to-register arithmetic/logic operations. Conditional branch
instructions take an immediate operand and conditionally increment the PC by the value of the
immediate operand depending on the condition codes set by the arithmetic/logic operations.
Memory instructions move data between memory and the registers, and also interact with the
cache and the full/empty bits. The basic instruction categories are summarized in Table 1.
The remainder of this section describes features of APIUL instructions used fer supporting
m ultiprocessing.

Data Type Formats APRIL supports tagged pointers for MuI-T by encoding the pointer
type in the low order bits of a data word. Figure 3 lists the different type encodings. An
important purpose of this type encoding scheme is to support hardware detection of futures.
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Name Type Reset f/e bit ELI trap CM 2 response
ldtt 1 No Yes Trap
ldett 2 Yes Yes Trap
ldnt 3 No No Trap
ident 4 Yes No Trap
ldnw 5 No No Wait
ldenw 6 Yes No Wait
idtw 7 No Yes Wait
ldetw 8 Yes Yes Wait
Empty location. 'Cache miss.

Table 2: Load Instructions.

Future Detection and Compute Instructions A compute instruction is a strict operation:
special action has to be taken if either of its operands is a future. APRIL generates a trap if
a future is encountered by a compute instruction. From the encodings presented in Figure 3,
future pointers are easily detected by their non-zero least significant bit.

Memory Instructions Memory instructions are a complex category because they interact
with the full/empty bits and the cache controller. On a memory access, two data exceptions can
occur: the accesstvd location may not be in the cache (a cache miss), and the accessed location
may be empty on a load or full on a store (a full/empty exception). Depending on the specific
nwmnorv instruction executed by the processor, on a cache miss, the cache/directory controller
,;in trap the processor or make the processor wait until the data is available. On full/empty
,,xcoptions, the controller can trap the processor, or allow the processor to continue execution.
l.oad instructions also have the option of setting the full/empty bit of the accessed location to
empty while store instructions have the option of setting the bit to full. These options give rise
to , kinds of loads and 8 kinds of stores. The load instructions are listed in Table 2. Store
instructions are similar except that they trap on full locations instead of empty locations.

A memory instruction also shares responsibility for detecting futures in either of its address
operands. Like compute instructions, memory instructions also trap if the least significant bit
of either of their address operands are non-zero. This introduces the restriction that objects in
memory cannot be allocated at byte boundaries. This, however, is not a problem because object
allocation at word boundaries is favored for other reasons [14]. This trap provides support for
implicit future touches in operators that dereference pointers like car.

Full/Empty Bit Conditional Branch Instructions The non-trapping memory instruc-
tions allow testing of the full/empty bit by setting a condition bit indicating the state of the
full/empty bit associated with the memory word. APRIL provides conditional branch instruc-
tions. Jfull and Jempty, that dispatc: on this condition bit. This provides a way to explicitly
control the action taken following a memory instruction that would normally trap on a full/empty
exception.

Frame Pointer Instructions Instructions are provided for manipulating the register frame
pointer (FP). FP points to the register frame on which the currently executing thread resides. An
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INCFP instruction increments the FP to point to the next task frame while a DECFP instruction
decrements it. The incrementing and decrementing is done modulo the number of task frames.
RDFP reads the value of the FP into a register and STFP writes the contents of a register into the
FP. These instructions allow the user to have total control over the value of the FP.

Instructions for Other Mechanisms The special mechanisms discussed in Section 4.5 are
made available through -out-of-band" instructions. APRIL provides several such instructions,
including a FLUSH instruction and software coherent versions of the load-store instructions dis-
cussed above. Interprocessor-interrupts, block-transfers, and FENCE operations are initiated via
memory-mapped I/O instructions (LDIO, STIO).

6 An Implementation of APRIL

An ALEWIFE node consists of several interacting subsystems: processor, floating-point unit.
cache. memory, cache and directory controller, and network controller. For the first round
implementation of the ALEWIFE system, we plan to use a modified SPARC processor and
an unmodified SPARC floating-point unit.1 There are several reasons for this choice. First,
we have chosen to devote our limited resources to the design of a custom ALEWIFE cache
and directory controller rather than to processor design. Second, the register windows in the
SPARC processor permit a simple implementation of course-grain multithreading. Third, most
of the instructions envisioned for the original APRIL processor map directly to single or double
instruction sequences on the SPARC. Software compatibility with a commercial processor allows
easy access to a large body of software. Furthermore, use of a standard processor permits us to
ride the technology curve; we can take advantage of new technology as it appears.

6.1 Rapid Context Switching on SPARC

SPARC processors contain an implementation-dependent number of overlapping register win-
dows meant for speeding up procedure calls [17]. The current register window is altered via spe-
cial SPARC instructions (SAVE and RESTORE) that modify the Current Window Pointer (CWP),
typically during the procedure call and return sequences. Furthermore, traps increment the
CWP. while the trap return instruction (RETT) decrements this pointer.

SPARC's register windows are suited for rapid context switching because most of the state
of a process (i.e. its 24 local registers) can be switched with a single-cycle instruction. Although
we ire not using multiple register windows within a single thread, this should not significantly
hurt performance [29, 28]. Register windows also permit rapid trap handling.

To implement course-grain multithreading, we employ two register windows per task frame
- a user window and a trap window. The SPARC processor chosen for our implementation
has eight register windows, allowing a maximum of four hardware task frames. As discussed
in Section 9, four appear to be sufficient. Since the SPARC does not have multiple program
counter (PC) chains and processor status registers (PSR), our trap code must explicitly save
and restore the PSRs during context switches (the PC chain is saved by the trap itself). These

'The SPARC-based implementation effort is in collaboration with LSI Logic Corporation.
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values are saved in the trap window. Because the SPARC has a minimum trap overhead of four
to five cycles (for squashing the pipeline and computing the trap vector), context switches will
take at least this long. See section 7.1 for further information.

The SPARC floating-point unit does not support register windows, but has a single, 32
word register file. To retain rapid context switching ability for applications that require Pfficient
floating point, we have divided the floating point register file into four sets of eight registers.
This is achieved by modifying floating-point instructions in a context dependent fashion as they
are loaded into the FPU and by maintaining four different sets of condition bits. A modification
of the SPARC processor will make the CWP available externally to allow insertion into the FPU
instruction.

6.2 Support for Futures

We detect futures on the SPARC via two separate mechanisms. Future pointers are tagged in
such a way that their lowest bit is set. Thus, direct use of a future pointer is flagged with a word-
alignment trap. Further. a strict operation. such as subtraction, applied to one or more future
pointers is flagged with a modified non-fiznum trap, which is triggered if one of the operands
has its lowest bit set (as opposed to one of the lowest two bits, as in the SPARC specification).

6.3 Implementation of Loads and Stores

The SPARC definition includes the Alternate Space Indicator (ASI) feature that permits a
simple implementation of APRIL's many load and store instructions (described in Section 5).
The ASI is available externally as an eight-bit field. Normal memory accesses use four of the
256 ASI values to indicate user/supervisor and instruction/data accesses. Special SPARC load
and store instructions (LDASI and STASI) permit use of the other 252 ASI values. Our first-
round implementation uses different ASI values to distinguish between flavors of load and store
instructions, special mechanisms, and I/O instructions.

6.4 Interaction with the Cache Controller

The cache controller in the ALEWIFE system maintains strong cache coherence, performs
full/empty bit synchronization, and implements special mechanisms. By examining the pro-
cessor's ASI bits during memory accesses, it can select between different load/store and syn-
chronization behavior, and can determine if special mechanisms should be employed. Through
use of the Memory Exception (MEXC) line on SPARC, it can invoke synchronous traps cor-
responding to cache misses and synchronization (full/empty) mismatches. The controller can
suspend piocessor execution using the MHOLD line. It passes condition information to the pro-
cessor through the Coprocessor Condition bits (CCCs), permitting the full/empty conditional
branch instructions (Mull and Jempty) to be implemented as coprocessor branch instructions.
Asynchronous traps (IPI's) are delivered via the SPARC's asynchronous trap lines.
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7 Compiler and Run-Time System

The compiler and run-time system are integral parts of the processor design effort. A Mul-T
compiler for APRIL and a run-time system written partly in APRIL assembly code and partly
in T [22] have been implemented. Constructs for user-directed placement of data and processes
have also been implemented. The run-time system includes the trap and system callable routines,
Mul-T run-time support. a scheduler, and a system boot routine.

Since a large portion of the support for multithreading, fine-grained synchronization and
futures is provided in software through traps and run-time routines, trap handling must be fast.
Below, we briefly describe the implementation and performance of the routines used for trap
handling and context switching.

7.1 Cache Miss and Full/Empty Traps

Cache miss traps occur on cache misses that require a network request and cause the processor to
context switch. Full/empty synchronization exceptions can occur on certain memory instructions
described in Section 5. The processor can respond to these exceptions by spin waiting, spin
blocking, or blocking the thread. In our current implementation, traps handle these exceptions
by spin blocking, which involve a context switch to the next task frame.

In our SPARC-based design of APRIL, we implement context switching through the trap
mechanism using instructions that change the task frame pointer FP. The following is a trap
routine that context switches to the thread in the next task frame.

rdpsr psrreg ; save PSR into a reserved reg.
save ; increment the window pointer
save ;by 2
wrpsr psrreg ; restore PSR for the new context
jmpl r17 ; return from trap and
rett r18 ; reexecute trapping instruction

We count 5 cycles for the trap mechanism to allow the pipeline to empty and save relevant
processor state before passing control to the trap handler. The above trap handler takes an
additional 6 cycles for a total of 11 cycles to effect the context switch. In a custom APRIL
implementation, the cycles lost due to PC saves in the hardware trap sequence, and those in
calling the trap handler for the PSR saves/restores and double incrementing the frame pointer
can be obviated, allowing a four-cycle context switch.

7.2 Future Touch Trap

A future touch trap can be signalled by compute and memory instructions. When this occurs,
the future that caused the trap will be found in a register because APRIL uses a load/store
architecture. Ideally, the trap routine should be provided enough information to allow easy
identification of this register. In our implementation however, the trap handler has to decode
the trapping instruction to find that register, which makes future touch traps more expensive
than necessary. Once it has found the future, the trap handler has to determine if the future
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has been resolved by looking at the full/empty bit of the future's value slot. If it is resolved, the
future in the register is replaced with the resolved value; otherwise the trap routine can decide
to spin block or block the thread that trapped. Currently, our future touch trap handler takes
23 cycles to execute if the future is resolved.

If the trap handler decides to block the thread on an unresolved future, the thread must
be unloaded from the hardware task frame, and an alternate thread may be loaded. Loading a
thread involves writing the state of the thread, including its general registers, its PC chain, and
its PSR. into a hardware task frame on the processor, and unloading a thread involves saving the
state of a thread out to memory. Loading and unloading threads are expensive operations unless
there is special hardware support for block movement of data between registers and memory.
Because the scheduling mechanism favors processor-resident threads, loading and unloading of
threads is infrequent. However, this is an issue that is under investigation.

8 Performance Measurements

This section presents some results on APRIL's performance in handling fine-grain tasks. The
next section will evaluate the impact of multithreaded processors in large-scale systems using
an analytical model.

We have implemented a simulator for the ALEWIFE system called ASIM written in C
and T. Figure 4 illustrates the organization of the simulator. The Mul-T compiler produces
APRIL code. which gets linked with the run-time system to yield an executable program. The
instruction-level APRIL processor simulator interprets APRIL instructions. It is written in T
and simulates 40,000 APRIL instructions per second when run on a SPARCStation 330. The
processor simulator interacts with the cache and directory simulator (written in C) on memory
instructions. The cache simulator in turn interacts with the network simulator (also written in
C) whenever it needs to make remote memory operations over the network. The simulator has
proved to be a useful tool in evaluating system-wide architectural tradeoffs; it provides more
accurate results that a trace driven simulation. The speed of the simulator has allowed us to
execute lengthy parallei programs. As an example, in a run of speech (described below), the
simulated program ran for 100 million simulated cycles before completing.

Evaluation of the ALEWIFE architecture through simulations on ASIM is in progress. A
sampling of our results on the performance of APRIL running parallel programs is presented
here. Table 3 ists the execution times of four programs written in Mul-T: fib, factor, queens
and speech. fib is the ubiquitous doubly recursive fibonacci program with futures around
iach of its recursive calls, factor finds the largest prime factor of each number in a range of
numbers and sums them up, queens finds all solutions to the n-queens problem for n = 8 and
speech iz a modified Viterbi graph search algorithm used a in connected speech recognition
system called SUMMIT being developed by the Spoken Language Systems Group at MIT. We
ran each program on the Encore Multimax, on APRIL using normal futures and on APRIL
using lazy futures. For purposes of comparison, execution time has been normalized to the time
taken to execute a sequential version of each program, i.e., with no futures and compiled with
the optimizing T-compiler (19].

The difference between running the same sequential code on T and on Mul-T on the Encore
Multimax (columns "T seq" and "Mul-T seq") is due to the overhead of future detection because
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Figure 4: Simulator Organization

T MuI-T
Program J System IseqIseq I 11 2 418 16

Encore 1.0 1.8 28.9 16.3 9.2 5.1
fib APRIL 1.0 1.0 14.2 7.1 3.6 1.8 0.97

APR-lazy [1.0 ]1.0 1.5 0.78 0.44 ] 0.29 0.19

Encore 1.0 1.4 1.9 0.96 0.50 0.26
factor APRIL 1.0 1.0 1. 0.90 0.45 0.23

APR-lazy 1.0 1.0 1.0 0.52 [ 0.26 0.14 0.09]

Encore 1.0 1.8 12.1 1.0 0.54 0.311
queens APRIL [1.0 1.0 1.4 0.67 0.33 0.18 0.10

APR-lazy 1 1.01 1.0[ 1.0 0.51[ 0.26 0.13 0.07
Encore 1.0 2.0 2.3 1.2 0.62 0.36

speech APRIL 1.0 1.0 1.2 0.60 0.31 0.17 0.10]
APR-lazy 11.0 1.0 1.0 0.52 0.27 1 0.15 0.09

Table 3: Execution time for Mul-T benchmarks. "T seq" is T running sequential code, "Mul-
T seq" is Mul-T running sequential code, 1 through 16 denote number of processors running
parallel code.
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the Encore does not support hardware detection of futures. On the Encore, future detection
introduces an overhead of a factor of 2, even though no futures are actually created. There is
no overhead on APRIL, which demonstrates the advantage of tag support for futures.

The difference between running sequential code on Mul-T and running parallel code on
Mul-T with one processor ("Mul-T seq" and 1) is due to the overhead of thread creation and
synchronization in a parallel program. This overhead is very large for the fib benchmark on both
the Encore and APRIL using normal futures because of very fine-grain thread creation. This
overhead accounts for approximately a factor of 28 in execution time, discounting the overhead
due to future detection. For APRIL with normal futures, this overhead accounts for a factor of
14. Lazy task creation on APRIL creates threads only when the machine has the resources to
execute them, and performs much better because it has the effect of dynamically partitioning
the program into coarser-grain threads and creating fewer futures. The overhead introduced is
only a factor of 1.5. In all of the programs, APRIL consistently demonstrates lower overhead
due to support for thread creation and synchronization over the Encore.

The numbers for multiple processor executions on APRIL (2 - 16) were measured using the
processor simulator without the cache and network simulators, in effect simulating a shared-
memory machine with a zero memory latency. The numbers demonstrate that APRIL and its
run-time system allow parallel program performance to scale when synchronization and task
creation overheads are taken into account, but when memory latency is ignored. The effect of
communication in large-scale machines depends on several factors such as scheduling, which are
active areas of investigation.

9 Scalability of Multithreaded Processor Systems

Multithreading enhances processor efficiency by allowing execution to proceed on alternate com-
putation threads while the memory requests of previous ones are being satisfied. However, any
new mechanism is useful only if it enhances overall system performance. This section analyzes
the system performance of multithreaded processors.

A multithreaded processor design must address the tradeoff between reduced processor idle
time and the increased cache miss rates, network contention, and context management overhead.
The private working sets of multiple contexts interfere in the cache. The added interference
misses coupled with the higher average traffic generated by a fully utilized processor impose
higher bandwidth demands on the interconnection network. Context management instructions
required to switch the processor between threads also add to the overhead. Furthermore, the
application must display sufficient parallelism to allow multiple thread assignment to each pro-
cessor.

What is a good performance metric to evaluate multithreading? A good measure of system
performance is system power, which is the product of the number of processors and the average
processor utilization. Provided the computation of processor utilization takes into account the
deleterious effects of cache, network, and context-switching overhead, the processor utilization
is itself a good measure.

We have developed a model for multithreaded processor utilization that includes the cache,
network, and switching overhead effects. A detailed analysis is presented in [2]. This section will
summarize the model and our chief results. Processor utilization U as a function of the number

17



of threads resident on a processor p is derived as a function of the cache miss rate m(p), the
network latency T(p), the context switching overhead C:

i , ..-.p for p < I+T(p)fp)
U(p) - l-T~p)m+CM() (1)(P for > I" 1'T(p)mlp)

P- 1cm(p)

When the number of threads is small, complete overlapping of network latency is not possible.
Processor utilization with one thread is 1/(1 + m(1)T(1)). Ideally, with p threads available to
overlap network delays, the utilization would increase p-fold. In practice, because the miss rate
and network latency increase to m(p) and T(p), the utilization becomes p/(1 + m(p)T(p)).

When it is pnsqible to completely overlap network latency, the processor utilization is limited
only by the context switching overhead paid on every miss (assuming a context switch happens
on a cache miss), and is given by 1/(1 + m(p)C).

The cache and network terms m(p) and T(p) are derived in [2]. These models have been
validated through simulations. Both these terms are shown to be the sum of two components:
One component independent of the number of threads p and the other linearly related to p
(to first order). Multithreading is shown to be useful when p is small enough that the fixed
components dominate.

Let us look at some results for the default set of system parameters given in Table 4. We use
a direct network [24] characterized by its dimension n and radix k. The analysis assumes 8000
processors arranged in a three dimensional array. The fixed miss rate comprises first-time fetches
of blocks into the cache, and the interference due to multiprocessor coherence invalidations.

Parameter Value
Memory latency 10 cycles

Network dimension n 3
Network radix k 20
Fixed miss rate 2%

Average packet size 4
Cache block size 16 bytes

Thread working set size 250 blocks
Cache size 64K bytes

Table 4: Default system parameters.

Figure 5 displays the processor utilization as a function of the number of threads resident
on the processor. Context switching overhead is 4. The degree to which the cache, network,
and overhead components impact overall processor utilization is also shown. The ideal curve
shows the increase in processor utilization when both the cache miss rate and network contention
correspond to that of a single process, and do not increase with the degree of multithreading p.

We see that as few as four processes yield over 85% utilization for a 4-cycle context-switching
overhead, which corresponds to the original APRIL processor. This result is similar to that
reported by Weber and t upta [30] for coarse-grain multithreaded processors. The chief reason a
low degree of multithreacing is sufficient is that context switches are forced only on cache misses,
which are expected to happen infrequently. The marginal benefits of additional processes is seen
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Figure 5: Relative sizes of the cache, network, and overhead components that affect processor

utilization. Context switch overhead 4 cycles.

to decrease due to network and cache interference. For example, when the number of processes

is increased from one to two, U increases from 0.4 to 0.7, but the corresponding improvement

in going from 2 to 3 is just 0.1.

Why is utilization limited to a maximum of about 0.95 despite having an ample supply of

threads? The reason is that available network bandwidth limits the maximum rate at which

computation can proceed. When available network bandwidth is used up, adding more processes

will not improve processor utilization. On the contrary, more processes will degrade performance

due to the increased cache interference. In such a situation, for better system performance. effort

is best spent in increasing the network bandwidth, or in reducing the bandwidth requirement of

each thread.

The four-cycle context switch overhead does not significantly impact performance for the

default set of parameters. Recall that context-switch overhead plays a role only when the number

of threads (plus overhead) is large enough to completely overlap network latency. Because the

network bandwidth saturates at 4 processes, network latency increases in proportion to the

number of processes, and it is not possible to completely overlap network delay even with an

infinite supply of threads.

Figure 6 displays the processor utilization for an 10 cycle context-switching overhead, which
corresponds to our initial SPARC-based APRIL design. The limiting utilization is still re-

markably high. Because utilization depends on the product of context switching frequency and

switching overhead, and because the switching frequency is expected to be small in a cache-

based system, the relatively large overhead of 10 cycles can be tolerated. This observation is

important because it allows a simpler processor implementation, and is exploited in the design

of APRIL.

A multithreaded processor requires larger caches to sustain the working sets of multiple
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processes, although cache interference is mitigated if the processes share code and data in the
cache. For the default parameter set, we found that caches greater than 64K bytes comfortably
sustain the working sets of four processes. Smaller caches suffer more interference and reduce
the benefits of multithrcading. For exarmple, two processes achieved 80% processor utilization in
a 256K byte cache, while a comparable utilization required three processes in a 64K byte cache.

10 Conclusions

We described the architecture of APRIL - a coarse-grain multithreaded processor to be used in
a cache-coherent multiprocessor called ALEWIFE. By rapidly switching to an alternate task,
APRIL can hide communication and synchronization delays and achieve a high processor uti-
lization. Because the processor is rarely idle, it makes effective use of the available network
bandwidth. APRIL provides support for fine-grain tasking and detection of futures. APRIL
achieves high single-thread performance by executing instructions from a given task until an ex-
ception condition like a synchronization fault or remote memory operation occurs and achieves
high single-thread performance. Coherent caches reduce the context switch ratio to approxi-
mately once every 50-100 cycles. Therefore context switch overheads in the 4-10 cycle range
are tolerable, significantly simplifying the processor design. Furthermore, by providing hard-
ware support only for performance-critical operations and migrating other functionality into the
compiler and the runtime system, we were able to simplify the processor design even further.

We described a SPARC-based implementation of APRIL that uses the register windows of
SPARC as task frames for multiple threads. A processor simulator and an APRIL compiler
and runtime system have been written. The SPARC-based implementation of APRIL switches
contexts in 11 cycles. APRI and its associated runtime system practically eliminate the overhead
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of fine-grain task creation and detection of futures. For example, for the futures-based Mul-T
language. the overhead reduces from 100% on an Encore Multimax-based implementation to
under 5% on APRIL. We evaluated the scalability of multithreaded processors in large-scale
parallel machines using an analytical model. For typical system parameters and a 10 cycle

context-switching overhead, the processor can achieve close to 80% utilization with 3 processor
resident threads.
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Abstract

Nonblocking networks arise in a variety of applications involving communications.
The most well known examples include telephone networks, data networks, and dis-
tributed memory architectures. Although asymptotically optimal constructions are
known for nonblocking networks in a variety of models, it is generally not known how
to select paths for the desired network connections efficiently on-line. In this paper, we
present the first optimal-time algorithms for path selection in an optimal-size nonblock-
ing network. In particular, we describe a bounded-degree, O(N log N)-switch nonblock-
ing network that can realize any sequence of connections and disconnections among N
terminals with O(log N) bit-step delay. Viewed in the context of a telephone switching
network, our network and algorithm can handle any sequence of calls among N parties
with O(log N) bit-step delay per call (even if many calls are made at once). Parties can
hang up and call again whenever they like, and multiparty calls can be made without
affecting the performance of the algorithm - every call is still put through in O(log N)
time. Viewed in the context of distributed memories for parallel machines, our algorithm
allows any processor to access any idle block of memory within O(log N) bit-steps at
any time - no matter what other connections have been made previously or are being
made simultaneously.

1 Introduction

Nonblocking networks arise in a variety of communications applications. Common examples
include telephone networks, data networks, and network architectures for parallel machines.
In a typical application, there are 2N terminals (usually thought of as N inputs and N
outputs) interconnected by switches (also called nodes) that can be set so as to link the
inputs to the outputs with node-disjoint paths according to a specified permutation. The
goal is to interconnect the terminals and switches so that any unused input-output pair
can be connected by a path of unused switches, no matter what other paths exist at the

This research was supported by the Defense Advanced Research Projects Agency under Contracts
N00014-87-K-825 and N00014-89-.-1988, the Air Force under Contract AFOSR-49-0271, and the Army
under Contract DAAL-03-86-K-0171.
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Figure 1: A nonblocking network with 3 inputs and 3 outputs.

time. Such a network is said to be nonblocking. For example, the 6-terminal graph shown
in Figure 1 is nonblockin; since no matter which input-output pairs are connected by a
path, there is a node-disjoint path linking any unused input-output pair. In particular, if
Bob is talking to Alice and Ted is talking to Carol, then Pat can still call Vanna.

Substantial progress has been made on the problem of building nonblocking networks
with small numbers of switches. Shannon [15] proved that any 2N-terminal nonblocking
network must have Q(NlogN) switches. Clos [5] and, later, others [6, 7, 14] discovered
nonblocking networks with O(Ni+e) switches and/or wires. Pippenger [13] discovered an
O(N log 2 N)-switch nonblocking network. Benes [4) described networks with O(N log N)
switches capable of realizing any 1-1 connection of inputs to outputs with node-disjoint
paths provided that all the connections to be made are known in advance, and provided
that once made, a connection cannot be broken. Such networks are called rearrangeable,
and are not as powerful as nonblocking networks. The existence of an O(N log N)-switch
nonblocking network was first proved by Bassalygo and Pinsker [3]. Although the Bassalygo
and Pinsker proof is nonconstructive, subsequent work on the explicit construction of ex-
panders [11] yielded a construction for an O(N log N)-switch nonblocking network. This
result was later extended by Feldman, Friedman, and Pippenger [71 who discovered con-
structions of nonblocking networks which had the additional property that each input can
be simultaneously connected to an arbitrary set of outputs provided that every output is
connected to just one input. Such networks are called generalized nonblocking networks, and
are useful in the context of multiparty calling in a telephone network as well as for broad-
casting in a parallel machine. Recently Turner [16] found constructions of such networks
that are somewhat simpler but slightly larger than the networks in [7].

Unfortunately, there has not been as much progress on the problem of setting the
switches so as to realize the connection paths. Indeed, many of the references cited previ-
ously show that there exists a way of setting the switches so as to realize the desired paths,
but are unable to provide any reasonable algorithms (on-line or off-line) for actually finding
the right switch settings. There are some exceptions. For example, it is possible to find
paths on-line in O(logN) time for the naive e(N 2 )-switch nonblocking networks (e.g. an
N x N mesh of trees [8]), and in polylogarithic time for some of the e(N+1 )-switch con-
structions mentioned previously. More recently, Lin [12] found polylogaritlimic time path
selection algorithms for O(N log2 N)-switch networks. No fast algorithms were known for
the O(N log N)-switch networks, however, and no O(log N)-step algorithms were known for
any of the o(Nl+)-switch networks.

In this paper, we describe an O(N log N)-switch nonblocking network for which each
path connection can be made on-line in O(log N) bit-steps. Moreover, the network can
realize any multiparty call in O(log N) word-steps on-line, provided that all the parties
to each call are known at the time of the call. (If all of the parties are not known in
advance, then there is a cost of O(logN) steps for each group of callers added later on.)
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The algorithms work even if many calls are made at once - every call still gets through
in O(log N) bit-steps, no matter what calls were made previously and no matter what calls
are currently active, provided that no two inputs try to access the same output at the same
time. (If many inputs inadvertently try to access the same output at the same time, all but
one of the inputs will receive a busy signal. The busy signals are also returned in O(log N)
bit-steps, but, at present, we require the use of the AKS sorting circuit [2] to generate
the busy signals. Alternatively, we could merge the calling parties together, but this also
requires the use of the AKS sorting circuit.) In all scenarios, the size of the network and
the speed of the path selection algorithm are asymptotically optimal.

In addition to providing the first optimal solution to the abstract telephone switching
problem, our results significantly improve upon previously known algorithms for bit-serial
(or byte-serial) packet routing. Previously, O(log N)-bit-step algorithms for packet routing
were known only in the special case where are all packet paths are created or destroyed at
the same time, and even then only by resorting to the AKS network, or by using random-
ness on the hypercube [1]. In many circuit-switched parallel machines, however, packets are
of varying lengths and packet paths are created and destroyed at arbitrary times, thereby
requiring that paths be routed in a nonblocking fashion - which is something that previ-
ously discovered algorithms were not capable of doing. Even without worrying about the
nonblocking property, our results provide the first non-AKS O(logN)-bit-step algorithms
for bit-serial packet routing on a bounded-degree network. Although we have not yet tested
our algorithms experimentally, we are optimistic that they will perform well in practice.

The family of networks that we use to obtain these results combines expanders and
the Benes network in a manner similar to the multibutterfly network described by Upfal
[17]. We refer to the networks as multi-Benes networks. The details of the construction
are provided in Section 2 of the paper. We can also apply our results to bandwidth-limited
switching networks such as fat-trees [101, and obtain optimal performance in terms of load
factor. Such results may be more useful in the context of telephone networks, where there
are limitations on the number of calls based on the proximity of the calls (e.g., it is not
possible for everyone on the East Coast to call everyone on the West Coast at the same
time).

The description and analysis of the path selection algorithms is divided into three sec-
tions. In Section 3, we describe on-line algorithms for adding a single connection path in the
network. These algorithms are similar to the fault-tolerant routing algorithms in [9]. In-
deed, we can think of currently-used wires as being faulty since they cannot be used to form
a new connection path. Similarly, the algorithms we describe for routing in nonblocking
networks can easily be extended to be highly tolerant to faults in the network.

In Section 4, we describe an O(log N)-bit-step algorithm for bit-serial routing in a multi-
butterfly. This algorithm relies on a unique-neighbor property possessed by all highly-
expanding graphs. By implementing this algorithm on the multi-Benes network and com-
bining it with the methods of Section 3, we produce an algorithm that can handle many
calls at the same time, independent of what calls have been made previously and what calls
are currently connected.

In Section 5, we describe algorithms for handling multiparty calls, and situations where
many inputs try to reach the same output simultaneously. Some of these algorithms rely
on the AKS sorting circuit and are not as practical as those described in Sections 3 and 4.
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Figure 3: An 8-input Benes network.

2 The multi-Benes and multibutterfly networks

Our nonblocking network is constructed from a Benes network and expander graphs in much
the same way as a multibutterfly network is constructed from a butterfly network. We start
by describing the butterfly, Benes, and multibutterfly networks.

An N-input butterfly has IgN + 1 levels, each with N-nodes. An example is shown
in Figure 2. The Benes network is a (21gN + 1)-level network consisting of back-to-back
butterflies. For example, see Figure 3.

A multibutterfly is formed by gluing together butterflies in a somewhat unusual way.
In particular, given 2 N-input butterflies G1 and G2 and a collection of permutations
II = (70, . ,Tr5 N) where i" : (0, V - 11 - (0, F - 1], a 2-butterfly is formed by merging
the node in row 2 + i of level I of G1 with the node in row f + wr(i) of level 1 of G2

for all 0 < i < - 1, all 0 _< j < 2' - 1, and all 0 :5 1 < lgN. The result is an N-input
(Ig N + 1)-level graph in which each node has 4 inputs and 4 outputs. Of the 4 output edges
at a node, two are up outputs and two are doum outputs (with one up edge and one down
edge coming from each butterfly). Multibutterffies (i.e., d-butterflies) are composed from d
butterflies in a similar fashion using d - 1 sets of permutations, V1(),..., 11( d- 1), resulting
in a (Ig N + 1) level network with 2d x 2d switches. For example, see Figure 4.

The notion of up and down edges can be formalized in terms of splitters. More precisely,
the edges from level I to level 1 + 1 in rows fto - 1 in a multibutterfly form a
splitter for all 0 < 1 < Ig N and 0 _ : _ 21 - 1. Each of the 21 splitters starting at level I
has 4 inputs and outputs. The outputs on level I + 1 are naturally divided into 4 up
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Figure 4: An 8-input 2-butterfly network.

Figure 5: A splitter.

outputs and - 1 down outputs. For example, see Figure 5. By definition, all splitters on
the same level I are isomorphic, and each input is connected to d up outputs and d down

outputs according to the butterfly and the permutations 7'(),... , r -l  . Hence, any input
and output of the multibutterfly are connected by a single logical (up-down) path through
the multibutterfly, but each step of the logical path can be taken on any one of d edges.
For example, see Figure 6.

The most important characteristic of a multibutterfly is the set of permutations 1(1M,
... , II(d-1 ) that prescribe the way in which the component butterflies are to be merged.
For example, if all of the permutations are the identity map, then the result is the dilated
butterfly (i.e., a butterfly with d copies of each edge). We are most interested in multi-
butterflies that have expansion properties. In particular, we say that an M-input splitter
has expansion property (a,[0) if every set of k < aM inputs is connected to at least /3k
up outputs and [k down outputs for [ > 1. Similarly, we say that a multibutterfly has
ezpansion property (a, 0) if each of its component splitters has expansion property (a,3).
For example, see Figure 7.

If the permutations a(),... ,II(d-) are chosen randomly, then with good probability
the resulting d-butterfly has expansion property (a, 0) for any d, o, and O for which 2a3 < 1
and

d < [3+1+ [3+1+In23 (1)d < 3 +1 + ln(yT.) (1

Constructions for splitters and multibutterflies with good expansion properties are known al.
though the expansion properties are generally not as good as those obtained from randomly-
generated graphs.

Like a multibutterfly, a multi-Benes network is formed from Benes networks by merging
them together. A 2-multi-Benes network is shown in Figure 8. An N-input multi-Benes
network has 2 lg N + 1 levels labeled 0 through 2 lg N. Levels ]g N through 2 lg N form a
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Figure 7: A splitter with expansion property (a,/3).

multibutterfly, while levels 0 through Ig N form the mirror image of a multibutterfly.
As in the multibutterfly, the edges in levels Ig N through 21g N are partitioned into

splitters. Between levels 0 and lg N, however, the edges are partitioned into mergers. More
precisely, the edges from level I to level I + 1 in rows j2 1+l to (j + 1)21+1 - 1 form a merger
for all 0 < I < lgN and 0 < j <_ N/21+1- 1. Forexample, see Figure 9. Each of the
N121+1 mergers starting at level I has 21+1 inputs and outputs. The inputs on level I are
naturally divided into 21 up inputs and 21 down inputs. All mergers on the same level I are
isomorphic, and each input is connected to 2d outputs. There is a single (trivial) logical
path from any input of a multi-Benes network through the mergers on the first lg N levels
to the single splitter on level lg N. From level lg N there is a single logical path through
the the splitters to any output. In both cases, the logical path can be realized by many
physical paths.

We say that an M-output merger has expansion property (a, 0) if every set of k < aM
inputs (up or down) is connected to at least 20k outputs P > 1. With nonzero probability,
a random set of permutations yields a merger with expansion property (a,#) for any d,a,
and 0 for which a# < 1 and

2/3+ 1 +In 20
2d < 2,3+1+ Ln(0 ) (2)

We say that a multi-Benes network has expansion property (a, #) if each of its component
mergers and splitters has expansion property (a,P). The multibutterflies and multi-Benes
networks considered throughout this paper are assumed to have expansion property (a,#).

3 A non-blocking path selection algorithm for the multi-Benes network

In this section we describe an efficient on-line algorithm for satisfying connection requests
in a multi-Benes network. The algorithm establishes a path from an unused input to an
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Figure 8: An 8-input 2-multi-Benes network.

Figure 9: A merger.

unused output in O(log N) bit-steps, where N is the number of rows. Although non-

blocking networks of size O(N log N) and depth O(log N) were previously known 13], no

efficient algorithms for establishing paths in them were known. Throughout, we assume

that at most one input tries to access any output at a time, and that each input accesses

at most one output at a time. Algorithms for multiparty calling are deferred to Section 5.

In order for the algorithm to succeed, the multi-Benes network must be lightly loaded

by some fixed constant factor L. Thus, in an N-row multi-Benes network, we only make

connections between the NIL inputs and outputs in rows that are multiples of L. Since

the other inputs and outputs are not used, the first and last Ig L levels of the network can

be removed, and the NIL inputs and outputs can each be connected directly to their L

descendants and ancestors on levels lg L and 21g N - Ig L, respectively.

The basic idea is to treat the switches through which paths have already been established

as if they were faulty and to apply the fault propagation techniques from [9] to the network.

In particular, we define a node to be busy if there is a path currently routing through it,

and we recursively define a node to be blocked if all of its up outputs or all of its down

outputs are busy or blocked. More precisely, switches are declared to be blocked according

to the following rule. Working backwards from level 21g N - ig L - 1 to level lgN, a switch

is declared blocked if either all d of its up edges or all d of its down edges lead to busy or

blocked switches. From level Ig N - 1 to level lg L, a switch is declared blocked if all 2d of

its outputs lead to busy or blocked switches. A switch that is neither busy nor blocked is

said to be working.

The following pair of lemmas bound the fraction of input switches that are blocked in
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every splitter and merger.

Lemma 1 For L > 1/2a(O - 1), at most a 2a fraction of the inputs in any splitter are
declared to be blocked. Furthermore, at most an a fraction of the switches are blocked because
of busy and blocked switches from the upper outputs, and at most an a fraction are blocked
because of the lower outputs.

P rooi: The p ;ou,'is by inductoug on ,zvel nurnoer, starting at level 2lg N-lg L and working
backwards to leve. Ig N. The base case is trivial since there are no blocked switches on level
2 Ig N - ig L. Suppse the inputs of an M-input splitter contain more than aM switches
that are blocked because of the upper (say) outputs. Consider the set U of busy or blocked
upper outputs. Since all of the edges out of a blocked input lead to busy or blocked outputs,
we can conclude that fUI > aO3M. Since all paths passing through the upper outputs must
lead to one of M/2L terminals, there can be at most M/2L busy switches among the upper
outputs of the splitter. Furthermore, by induction there are at most aM blocked switches
among the upper outputs. Thus, IUI _< aM + M/2L. For L > 1/2a(,3 - 1) we have a
contradiction. Hence, at most an a fraction of the switches are blocked or busy, as claimed.

13

Lemma 2 For L > 1/2a(3- 1), at most a 2a fraction of the upper inputs and a 2a fraction
of the lower inputs in any merger are blocked.

Proof: The proof is like that of Lemma 1 1-
After the fault propagation process, every working switch in the first half of the network

has an output that leads to a working switch, and every working switch in the second half
has both an up output and a down output that lead to working switches. Furthermore,
since at most a 2a fraction of the switches in each merger on level Ig L are blocked, each of
the NIL inputs has an edge to a working switch on level L. At the other end, each of the
NIL outputs can be reached by a working switch on level 2 Ig N - Ig L. As a consequence,
we can establish a path through working switches from any unused input to any unused
output in O(log N) bit-steps using a simple greedy algorithm. Since the declaration of
blocked switches takes just O(log N) bit-steps, and since the greedy routing algorithm is
easily accomplished in O(log N) bit-steps, the entire process takes just O(log N) bit-steps.

4 Establishing many paths at once

The preceding algorithm can establish any single additional path successfully in O(log N)
bit-steps. While this is sufficient to show that the multi-Benes network is nonblocking, it is
not sufficient to handle many calls at once. In what follows, we describe an algorithm for
routing an arbitrary number of additional calls in O(log N) bit-steps. As before, we assume
for the time being that each input and output is involved in a at most one two-party call.
Extensions to the algorithm for handling multiparty calls are described in Section 5. We
also assume that paths are established between inputs and outputs on rows congruent to
0 mod L in the multi-Benes network, where L > 1/a. This will insure that no splitter or
merger is ever overloaded.

To simplify the exposition of the algorithm, we start by describing an algorithm for
routing any initial set of paths in a multibutterfly (i.e., we don't worry about the nonblocking
aspect of the problem for the time being). This comprises the first known circuit-switching
algorithm for the multibutterly. (Previous routing algorithms for the multibutterfly [9, 17]
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only worked for the store-and-forward model of routing.) We then modify the blocking
definition of Section 3 and show how to implement the algorithm in a nonblocking fashionon the multi-Benes network.

4.1 Circuit-switching on a multibutterfly

Our circuit-switching algorithm requires the splitters in the multibutterfly to have a special
unique-neighbors' property defined as follows.

Definition 3 An M-input splitter is said to have the (a, 6) unique neighbor property if
in every subset X of k < aM inputs, there are 6k nodes in X which have an up-output
neighbor that is not adjacent to any other node in X, and there are 6k nodes in X which
have a down-output neighbor that is not adjacent to any other node in X (i.e., 6k nodes in
X have a unique up-neighbor, and 6k nodes have a unique down-neighbor).

Lemma 4 Any splitter with the (a, 0) ezpansion property has the (a,6) unique-neighbors
property where 6 = 20/d - 1, provided that 1 > d/2.

Proof: Consider any set X of k < aM inputs in an M-input splitter. These nodes have
Ok neighbors among the up (down) outputs. Let n, denote the number of these neighbors
incident to precisely one node of X, and let n2 denote the number of neighbors incident to
two or more nodes of X. Then n, + n2 _ Ok and n, + 2n2 :_ dk. Solving for n, reveals
that n, _ (2 - d)k. Hence at least (23/d - 1)k of the nodes in X are adjacent to a unique
neighbor. 01

By Equation 1, we know that randomly generated splitters have the (a, 6) unique-
neighbors property where 6 approaches 1 as d gets large and a gets small. Explicit con-
structions of such splitters are not known, however. Nevertheless, we will consider only
mutibutterflies with the (a, 6) unique-neighbors property for 6 > 0 in what follows.
Remark: The (a, 3) expansion property (3 > d/2) is a sufficient condition for the unique-
neighbors property, but by no means necessary. In fact, we can easily prove the existence
of random splitters which have a fairly strong (a,6) unique-neighbors property for small
degree. For such graphs, the routing algorithm we are about to describe is more efficient
in terms of hardware required. However, multibutterfLies with expansion properties will
remain the object of our focus.

It is relatively easy to extend paths from one level to the next in a multibutterfly with
the (a, 6) unique-neighbors property. The reason is that those paths at switches with unique
neighbors can be trivially extended without worrying about blocking any other path trying
to reach the next level. By proceeding recursively, it is easy to see that all the paths can
be extended from level I to level I + 1 (for any 1) in log(N/L21)/log(1/1 - 6) steps. In
particular, a "step" consists of:

1. every path still waiting to be extended sends out a "proposal" to his output (level
I + 1) neighbors in the desired direction (up or down),

2. every output node that receives precisely one proposal sends back its acceptance to
that proposal,

3. every path receiving an acceptance advances to one of its accepting outputs on level
1+1.

9
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Splitters connecting level I to level 1 + 1 have M = N/21 inputs and at most M/L
paths can pass through them by definition of L. Since L > 1/a, the set of switches
containing paths needing to be extended has size at most aM and we can apply the (a, 6)
unique-neighbors property to ensure that at each step, the number of paths still remaining
to be extended decreases by a (1 - 6) factor. Hence, all of the paths are extended in
log(N/L2')/log(1/(1 - b)) steps, as claimed.

2y uing the path ex ension agoriLhm just described on each level in sequence, we can
construct all of the paths in

IsN-1 lg 12 N
log 2 log O(log2 N)

bit-steps. To construct the paths in O(log N) bit-steps we modify this algorithm as follows:

Given a fraction < a of paths that need to be extended at an M-input splitter,
the algorithm does not wait O(log M) time for every path to be extended before
it begins the extension at the next level. Instead, it waits only 0(1) steps, in
which time the number of unextended paths falls to a fraction p of its original
value, where p < l1d. Now the path extension process can start at the next level.
The danger here is that the p fraction of paths left behind may find themselves
blocked by the time they reach the next level, and so we need to ensure that
this won't happen. Therefore, stalled paths send out place-holders to all of their
neighbors at the next level, and henceforth the neighbors with place-holders
participate in path extension at the next level, as if they were paths. Of course,
the neighbors holding place-holders must in general extend in both the upper
and the lower output portions of the splitter, since they don't know yet which
path will ultimately use them.

Notice that a place-holder not only reserves a spot that may be used by a path at a
future time, but also helps to chart out the path by continuing to extend ahead. In order to
prevent place-holders from multiplying too rapidly and clogging the system - since if the
fraction of inputs of a splitter which are trying to extend rises above a, the path extension
algorithm ceases to work - we need to ensure that as stalled paths get extended, they
send cancellation signals to the placeholding nodes ahead of them to tell them they are not
needed anymore. When a placeholding node gets cancellations from all the nodes who had
requested it to hold their place, it disappears and ceases to extend anymore. It also sends
cancellations to any nodes ahead of it that may be holding a place for it. As we shall see,
this scheme prevents place-holders from getting too numerous.

The O(log N)-step algorithm for routing paths proceeds in phases consisting of the
following two types of steps:

" C steps of passing cancellation signals. These cancellation signals travel at the rate
of one level per step,

" T steps of extending from one level to the next. In this time, the number of stalled

(i.e., unextended) paths at each splitter drops by least a factor of p, where p _ ( 1 _ 6 )T.

Each path is restricted to extend forward by at most one level during each phase. We
refer to the first wave of paths and placeholders to arrive at a level as the wavefront. The
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wavefront moves forward by one level during each phase. If a path or placeholder in the
wavefront isn't extended in T steps, it sends placeholders to all of its neighbors at the end
of the phase. We will assume that C > 2 so that cancellation signals have a chance to catch
up with the wavefront, and that d > 3.

The following lemmas will be useful in proving that every path is extended to completion
in Ig N phases provided that L > 2/at and p < 1/13d. The key to our approach is to focus
on the number of stalled paths (corresponding to real paths or placeholders) at the inputs
of each splitter. In particular, we let S(i, t) denote the maximum fraction of inputs of any
splitter at level i that contain stalled paths at the end of phase t of the algorithm. By
definition, S(i,t) = 0 for t < i, since the wavefront arrives at level i at phase i. Each stalled
path generates up to 2d placeholders at the next level, which might later become stalled
themselves, so it is crucial to keep the number of stalled paths at each level small.

Lemma 5 If the number of paths (real or placeholder) reaching the inputs of a level i splitter
when the wavefront arrives is less than an a fraction of the inputs, then S(i. t) < pt-S(i, i)
for t > i.

Proof: In each phase of the algorithm, the number of stalled paths at the inputs drops
by a factor of p, provided the number of paths trying to extend is never greater than an a
fraction of the inputs of the splitter. Since the number of paths reaching the inputs never
increases after the wavefront arrives, this condition is always satisfied. 0

Let Pi denote the fraction of inputs containing paths (real and piaceholder) in a level
i splitter when the wavefront arrives (i.e., at the end of phase i - 1). Note that if Pi < a,
then S(i,i) _< pPi.

Lemma 6

1 C 00 C
P, !5 .- + 2dS(i - ,i - 1)+ 12 dS(i - k,,i - 2) + EE 2c'+ dS( i - Cl - ,i - I - 2).

k=2 1=1 k=1

Proof: Note that 1/L upperbounds the fraction of real paths that could be in the wavefront,
since that is the number of real paths that will ever pass through the splitter. The 2dS(i -
1,i - 1) term represents the fraction of inputs that could have placeholders generated by
stalled paths at level i - 1 (the factor 2 comes in because the number of inputs in a splitter at
level i - 1 is twice as many as those in a level i splitter). Next, 4dS(i - 2, i - 2) upperbounds
the fraction of inputs containing placeholders generated by paths stalled at level i - 2,
but whose placeholders were extended from level i - 1 to level i. (Note that if C > 3, for
example, we have an 8dS(i- 3, i - 2) contribution instead of an 8dS(i- 3, i - 3) contribution
to Pi since paths stalled in level i - 3 during phase i - 3, but getting through during phase
i - 2, send a cancellation signal to levels i - 2, i - 1, and i during phase i - 1, and hence
they do not contribute placeholders to level i during phase i.) The rest of the terms in
the summation may be counted similarly. Finally, though our summation seems to have
infinitely many terms, only finitely many of them are non-zero. 0

Lemma 7 The fraction of inputs containing paths (real and placeholders) at any splitter is
never more than a provided L > p:5 -_T, d > 3, and C > 3.

Proof: We prove by induction on i that for y = j, S(i,i) < 7 and P < a. We only need
to prove the inductive step, since the base case is trivial. By the recurrence of Lemma 6,
we have:
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1C ooC

A -L 2d-t + 2kdypk 2 + 2_
k=2 1=1 k=1

- +2d 7+ 4d(1 - (2 p) c - ' ) d72C+1pc-2(1 - (2p)C)
1 - 2p(1- 2 CpC)( -2p)

1
< 4 -J-2d 7 + 4.06d7 + .3d7 .

Note that we have used the fact that d > 3, C > 3, and p < 1/13d. (We really only
needed C _> 2, but the constants are better for C > 3.) Thus if y = a/13d and L > 2/a,
then Pi :5 a. Also, as we noted earlier, S(i,i) < pPi and if p < 1/13d, by Lemma 6, we
have: S(i, i) < a/13d = -t, thereby establishing the induction. El

From Lemma 7, it is clear that no splitter ever has more than an a fraction of its
inputs containing paths to be extended to outputs. Therefore the path extension algorithm
never is swamped by placeholders and always works as planned at each level, cutting down
the number of stalled paths by a factor of p during each phase. Hence, lg(M/L)/lg(1/p)
phases after the wavefront arrives at a spLitter of size M, all paths are extended. Thus, the
algorithm establishes all paths successfully in

rui (+ + log~-' N

0esin (N + l. + ! VI) ra O<<1(N/L) Cloglo logC

= log(.N/L)

phases, provided p < 1/4. This is because if a path is last stalled at level i, then it passes
through level i by phase i + log(N/2'L)/log(1/p) and reaches the end (log(NIL) - i)/C
phases later. At first, this result seems too good to be true, but recall that stalled re-
paths catch up to the wavefront very quickly once they get through, and that they get
through at a very high rate. Hence, all real paths get through to the final level along with
the wavefront!

By propagating the cancellations from the previous phase at the same time as the paths
are extended, a single phase can be implemented in max(C,T + 1) steps. (The extra step in
T + 1 is for initiating placeholders for stalled paths.) By using very good splitters (6 - 1),
a small, d large, C = 3, and T = 1, we can obtain a (2 + e)logN step algorithm for
routing all the paths. It is worth noting that this beats the best previous bounds for store
and forward routing [9] by a factor of 2. Unfortunately, d and L need to be quite large to
achieve this bound. For more reasonable values of d (< 10) and L (< 100), we can achieve
provable routing times of about 100 lg N. Fortunately, the algorithms appear to work faster
in reality. We plan to have experimental data demonstrating this point in the final draft of
the paper.

It is also worth noting that each switch needs only to keep track of a few bits of infor-
mation to make its decisions. This is because only the ith bit of the destination is needed
to make a switching decision at level i, and therefore a switch at that level looks at this bit,
strips it off, and passes the rest of the destination address onward. The path as a whole
snakes forward through the network. If it ever gets blocked, the entire snake halts behind
it. The implementation details for this scheme are straightforward. Previously, only the
AKS sorting circuit was known to achieve this performance for bounded-degree networks,
but at a much greater cost in complexity and constant factors.
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4.2 Routing many paths in a nonblocking fashion on a multi-Benes network

It is not difficult to implement the algorithm just described on a multi-Benes network. We
need to define the unique-neighbor property for mergers, but it is straightforward. If we
have to route around existing paths, however, then we have to combine the algorithm with
the kind of analysis used in Section 3. In particular, we need to modify the definition of
being blocked so that z. node ca level I is blocked if more than 23- d- 1 of its up (or down)
neighbors on level 1 + 1 are busy or blocked. (As before, we assume that '3 > d/2.) Working
nodes will then be guaranteed to have at least 2d - 2/0 + 1 working neighbors. Hence, any
set of k < aM working inputs in an M-input splitter will have a (a, id) unique-neighbor
property, which is sufficient for the routing algorithm to work.

Of course, we must also check that the new blocking definition does not result in any
inputs to the multi-Benes network becoming blocked. This can be done with an argument
similar to that in Lemma 1. Roughly speaking, if an a fraction of the inputs to an M-input
splitter were to become blocked, by upper inputs (say), then each of the inputs is incident
to 23 - d - 1 blocked or busy upper inputs. Hence, of the a/3M upper output neighbors, at
most (2d - 20 + 1)aM of them can be working. This means that at least a 2(3/0 - 2d - 1)a
fraction of the upper outputs are busy or blocked. By induction, however, the fraction of
the blocked upper outputs is at most a and thus

1
2(30 - 2d - 1)a < a +-

L

which is a contradiction if L > 1/(60 - 4d - 3). Of course, for this argument to work, we
need d large enough so that it is possible for / > (4d L 3)/6. It is likely that this can be
improved to / > d/2, but the details will be left to the final paper.

5 Handling multiparty calls

If all the parties of a multiparty call are known to a caller at the start of the call, it is easy
to extend the algorithms in Sections 3 and 4 to route the call using the greedy algorithm.
The path simply creates branches where necessary in levels lg N through 21g N of the
multi-Benes network to reach all the desired output terminals. The bit complexity of the
algorithm may increase, however, to reflect the Kolmogorov complexity of the set of outputs
that the path must reach.

If parties to a multiparty call are to be added after the call is already underway, then we
use a multi-Benes network with wraparound connections, and add parties by routing paths
from parties already involved in the call. Each addition takes O(log N) steps, and by being
careful, we can insure that the resulting "depth" of the call is at most O(log2 N). This is
not quite as elegant as the solutions proposed in [7] for generalized non-blocking netwc rks,
but no routing algorithms are known at all for those constructions.

If many parties want to call the same output terminal, then we have two options:
merging the callers into a single multiparty call, or giving busy signals to all but one of the
callers. Both options can be performed in O(log N) bit-iteps, but both require the use of
the AKS sorting circuit for doing some processing. In particular, we use the AKS circuit
to sort the calls according to their destination, and then use a prefix operation to combine
them or to send busy signals to redundant calls. Calls not receiving busy signals can then
proceed as before. Calls that are combined are handled in a manner analogous to the way
we handled multiparty calls, only in reverse.

The details of all of these procedures will be included in the final draft of the paper.
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Abstract imizations makes an exhaustive search approach to optimu,.
encoding infeasible for anything but the smallest problems.

In this paper. we present a theoretical framework for the min-
imization of logic functions with symbolic or multiple-valued
outputs. Using this framework, we develop efficient, exact al-
gorithms for the problems of output encoding and finite state
machine (FSM) state assignment. All previous automatic ap- 10 inpi 1010 0001 outi
proaches to these encoding problems have involved the use of 01 inpl 0110 00-0 ou2
heuristic techniques. Other than the straightforward, exhaus- 10 inp2 1010 0011 out2
tive search procedure, no exact solution methods have been -1 inp2 1011 0100 out3
oroposed. 1- inp3 0110 1000 Out3

When targeting two-level logic implementations, Lhe prob-
l,'ms of output encoding and state assignment involve a search 0- inp3 1001 1011 out4
for appropriate binary codes for the symbolic outputs or states -- in7p4 0010 1111 out5
so as to obtain a minimum number of product terms after -- inlp5 1101
two-level Boolean minimization. A straightforward, exhaus-
tive search procedure requires O(N!) exact Boolean ninimiza- (a) (b)
tions, where N is the number of symbolic outputs or states.
We define a notion of generalized pime implcants for func- Figure 1: Symbolic Covers
tions with multiple-valued outputs, and propose a novel mini-
mization procedure of prime implicant generation and covering In 15), it was shown that the input encoding problem, whtf
for solving the output encoding problem. An optimum solu- the objective is to minimize the number of product terms in ai
tlion to this covering problem is also an optimum solution to eventual two-level implementation, can be solved exactly
the encoding problem. A single logic minimization step thus means of an exact minimization of a function with multi[
replaces O(N!) minimizations. valued inputs. The given symbolic cover is transformed int,

It has been shown previously that the input encoding prob- function with multiple-valued inputs and an optimum encod
lori can be exactly solved using Boolean minimization over ing, that results in a minimum binary cover whose cardinal
functions with multiple-valued inputs. An extension of our equals the cardinality of the minimized multiple-valued coy
algorithm that handles functions with multiple-valued inputs is found.
and outputs can be used to solve the state assignment problem The corresponding problem of optimal output encoding ha.
exactly. remained largely unsolved due to the lack of a viable the(

Experimental results are presented on a set of examples. for the minimization of logic functions with multiple-vah
outputs.

In this paper, we present an exact algorithm for out
1 Introduction put encoding, based on the minimization of functions u

symbolic/multiple.valued outputs, rather than binary-valh
Input and output encoding problems in switching theory in- outputs. The algorithm finds an encoding that minimizes t.,
volve the assignment of binary codes to symbolic inputs and number of product terms in an optimized two-level impleme.
outputs so as to minimize a given cost function, typically, the tation. While the algorithm has worst-case exponential cc
area of the resulting logic network. In this paper, we are con- plexity, its average-case behavior is significantly better than
cerned with two-level or Programmable Logic Array (PLA) exhaustive search method, since a single minimization repla_
implementations of logic functions. The cost function targeted O(N.) minimizations (N is the number of symbolic outputs t,
in this case is the number of product terms in the eventual be encoded). The algorithm consists of the following steps
two-level implementation. State assignment, one of the oldest 1. Generation of generalized prime implicants (GPIs) fr,-
problems in automata theory, is also an encoding problem. the original symbolic/multiple-valued output cover.

The difficulty in optimal encoding stems from the fact that
one has to model a complicated logic optimization step that 2. Solution of a constrained covering problem, namely,
follows. For instance, given the symbolic truth-tables like selection of a minimum number of GPIs that form
those in Figure 1, which are to be implemented in PLA encodeable cover.
form, one wishes to find an encoding of the inpl, .., inpN
(outl, .., outM) so as to minimize the number of prod- 3. Encoding of the symbolic outputs respecting the encod
uct terms of the resulting PLA after two-level Boolean min- constraints generated during Step 2.
imization. A simple, exhaustive search technique to find the
otiium encoding requires O(N!) ((O(M!)) exact two-level 4. Given the codes of the symbolic outputs and the selecte,
Boolean minimizations. Two-level Boolean minimization is a GPIs, a two-level cover with product term cardinal'
mature area - proframs like ESPRESSO-EXACT [6] and Mc- equal to the number of GPIs can be trivially construct
BOOLE [2] minimize large functions exactly using reasonable This two-level cover represents an exact solution to Ln.
amounts of CPU time. Ilowever, the numberof required rin- encoding problem.



Classical prime implicant generation techniques can be mod-
ified to generate GPIs in Step 1. The covering problem of
Step 2 is more complicated than the classical (unate) cover-
ing problem. Htence, classical covering algorithms cannot be
directly used. Step 3 involves constrained encoding where the 0001 001 0001 10000
objective is to minimize the number of encoding bits required 00-0 010 00-0 01000
to satisfy constraints derived from Step 2. This step is also 0011 010 0011 01000
NP-complete. However, our focus here is to exactly minimize 0100 011 0100 00100
product term cardinality and heuristically minimize the area 1000 011 1000 00100
of the PLA that implements the cover. 1011 100 1011 00010
We have also developed an exact state assignment algorithm

that has essentially the same structure as the ,'.,)ve procedure. 1111 101 1111 00001
In the state assignment case, the present states are represented
v, different values of a single m ul, iple-valued variable (as in (a) (b)
i5]) The covering problem i- more complex than in the output
encoding case and so is the constrained encoding problem. Figure 2: Possible Encodings of the Symbolic Output
Due to space constraints we will concentrate on the output
encoding problem in this paper.

In Section 2, basic definitions and notations used are given. minterms. The conjunction of two minterms is the bitwise
The exact output encoding algorithm is described in Section 3. AND (written as fl) of the two minterms.
We give theorems that prove the correctness of the procedure. A logic function may have multiple-valued or symbolic
Pruning heuristics that can be used in the exact solution of the input variables and symbolic output variables as in Figure
co~ering problem in output encoding are described in Section 1. A symbolic input or output variable takes on symbolic
4. Techniques for the creation of reduced prime implicant values.
tables are also described. Preliminary experimental results
are presented in Section 5.3 Output Encoding

2 Preliminaries 3.1 Introduction

Let B = {0, I Y = {0, 1, 2). A logic (Boolean, The output encoding problem entails finding binary codes for
switching) function ff in n input variables, rl, x... x,, symbolic outputs in a switching function so as to minimize the
and ,ri output variables, y, , .. y,, is a function area or an estimate of the area of logic function after encoding

and logic optimization. Here, we are concerned with two-level
B ,or PLA implementations of logic - the optimization step thatff .follows encoding is one of two-level Boolean minimization.
St opAn example encoding of the symbolic output of the func-

~re = .. ',s e B' is the input and tion shown in Figure 1(b), is shown in Figure 2(a). The en-4 =l n E soite ih the output of ff. B' is the coded cover is now a multiple-output Boolean function. Thiso~olean n-space associated with the function ff. Note that function can be minimized using standard two-level Boolean
in addition to the usual values of 0 and 1, the outputs % minimization algorithms. These algorithms exploit the shar-
may also take the don't care value 2 (or -). Such func- in m btwee the dfere outpus soi t pr
tiois are called incompletely specified logic functions. A ing of terms between the different outputs so as to produce
completely specified function f is a logic function taking a minimum or minimal cover. An encoding such as the one
values in {0. 1)' .i.e.. all the vilues of the input map into 0 in Figure 2(b), where each symbolic value corresponds to a
or 1 for all the components of f. For each component of a separate output, can have no sharing of terms between the
incompletely secifie lo f.to ff, component.. n outputs. Two-level Boolean minimization of the cover of Fig-

yspecified logic function ff, f, =ure 2(b) would produce a cover with a number of productone can define: the ON-set, Xo" C B', the set of input terms equal to the total number of product terms produced
values r such that ff,() = 1, the OFF-set, X the set by disjointly minimizing each of the ON-sets of the symbolic
of values such that ff,(z) = 0 and the don't care set XDC, values of Figure (b). This cardinality is typically far from tht
the set of values such that ff,(z) = 2. A logic function with minimum cardinality achievable via an encoding that results
m = 1 is called a single-output function, while m > 1, it is in maximal sharing of product terms across outputs.
called a multiple-output function.

A cube in a Boolean n-space associated with a logic func- 3.2 Previous Work
tion. f, can be specified by its vertices and by an index indi-
cating to which components of f it belongs. An input cube c Approaches to solving the output encoding problem in th,
is specified by a row vector c = [ci, .. c,] where each input past have involved the use of heuristic techniques (e.g. [4, 7])
variable takes on one of three values 0, 1 or 2 (or -). A 2 in The program CAPPUCINO [4] attempts to minimize th(
the cube is a don't care input, which means that the input can number of product terms in a two-level implementation anu-
take the values of either 0 or 1. For example, the cube 002 is secondarily the number of encoding bits. The algorithm in,
equal to the union of the cubes 001 and 000. A minterm is CAPPUCINO is based on exploiting dominance relationships
a cube with only 0 and I entries. Cubes can also be classified between the binary codes assigned to different values of the
based on the number of 2 entries in the cube. A cube with k symbolic output that is to be encoded. Consider the the exam-
entries or bits which take the value 2 is called a k-cube. A pie of Figure 1(b). If the symbolic value outl is given a binarN
minterm thus is a 0-cube. code 110 which dominates the binary code 100 assigned t(

A cube ci is said to cover (contain) another cube c2 , if out2, then the input cubes corresponding to outl canbe usek.
each entry of ci is equal to the corresponding entry of c2 or as don't cares for minimizing the input cubes of out2. Exploit
is equal to 2. A minterm m, is said to dominate another ing these don't cares can reduce the cardinality of the ON-sei
minterm m 2 (written as mi D M 2) if for each bit position in of the symbolic value out2. In CAPPUCINO, an attempt i,
the second minterm that contains a 1, the corresponding bit made to heuristically construct dominance relationships be
position in the first minterm also contains a 1. Minterm m 2 is tween symbolic values that result in maximal reduction of th,
dominated by m, (written as m 2 C rnl). The disjunction of ON-sets of the dominated symbolic values. Satisfying a non
two minterms is the bitwise OR (writt-'n as or U) of the two conflicting set of dominance relationships results in some re
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3.4 An Algorithm for Optimal Output En-
Figure 3: Dominance and Disjunctive Relationships coding

In this section, we present an exact algorithm for output en-
coding that guarantees the minimum number of product terms

duction of the overall cover cardinality. There is no guarantee in an encoded and optimized cover. As described briefly in S(
of achieving minimum cardinality because all possible domi- tion 1, the algorithm consists of four steps. We detail the

nance relations are not explored, nor is an optimum set se- steps in the remainder of this section.
We are given a symbolic cover S with a single symbolic out-

lected. However, a more basic shortcoming is that dominance put (c.f. Section 3.6 for generalization to the multiple svi
relations are not the only kind of relationships between sym-
bolic values that can be exploited. After a symbolic cover has bolic output case). The different symbolic values are denot

been encoded, it represents a multiple-output logic function. Vi, .., VN. The ON-sets of the vi are denoted by Ci. Eacr

As we will show, minimizing a multiple-output function entails Ci is a set of Di minterms {ri, .. miD, }. Each rminterm m,.
exploiting other sharing relationships than just dominance, has a tag as to what symbolic value's ON-set it belongs to.

minterm can only belong to a single symbolic value's ON-s
Minterms are also referred to as 0-cubes.

3.4.1 Generating Generalized Prime Implicants
3.3 Disjunctive Relationships The generation of generalized prime implicants (GPIs) pro-

ceeds in a manner similar to the well-known Quine-McCluske.
Consider the symbolic cover of Figure 3(a) that has one sym- (Q-M) procedure (31, with some differences.
bolic output and one binary-valued output. Using exclusively 1-cubes are composed by merging all pairs of mergeable
dominance relationships in an encoding, it is not possible to cubes. If two 0-cubes with the same tag, namely, (v,). art
reduce the size of any of the ON-sets of the symbolic values, merged then the 1-cube has the same tag (vi). If a 0-cube oi
One such encoding is shown in Figure 3(b). The binary code tag (vi) is merged with a 0-cube with tag (vj), the resultant
00 has been given to outl, 01 given to out2 and 11 given to cube has a tag (vi, vj). The rule for canceling 0-cubes cover
out3. However, if we code out 1 with 11, out2 with 01 and out3 by 1-cubes is different from the Q-M method. A 0-cube car
with 10 as in Figure 3(c), a reduction in cover cardinality after be canceled by a 1-cube if and only if the 1-cube covers tht
minimization can be obtained (Figure 3(d)). As described ear- 0-cube and their tags are identical. For example, a 1-cube 1
lier. in a dominance relationship, the ON-set of the dominated with tag (vI, v2) cannot cancel a 0-cube 110 with tag (vl)
symbolic value is reduced. In Figure 3(c) and 3(d), however, The above can be generalized to k-cubes.
it is in fact the dominating symbolic value, outl, whose ON-
set cardinality has been reduced from 1 to 0. This can be 1. When two k-cubes merge to form a k + 1-cube, the tag
explained by the disjunctive relationship between the codes of the k + 1-cube is the union of the two k-cube tags.
out2. out3 and outl. We have outl = out2 I out3 and hence
the ON-set of out 1 can be reduced using the ON-set of out2 2. A k + I-cube cancels a k-cube only if the k + 1-cube cover
and out3. Simply making outI dominate out2 and out3 is not the k-cube and they have identical tags.
enough, the code of outl has to be the disjunction (bitwise A cube with a tag that contains all the symbolic vah
OR) of the codes of out2 and out3. Exploiting these relation- (vg, vN) can be discarded and is not a GPI. These cubes a,
ships is basic to a multiple-output logic minimizer. Hence, an not rqe Vn an iad anduisono (G. Theecubes.arexa.t ecodng lgoith ba totak ino acout tesere- not required in a minimum solution (c.f. Theorem 3.3). Th,
exact encoding algorithm has to take into account these re- generation of generalized prime implicants for the symbclationships in order to produce a minimum cardinality cover cover of Figure 3(a) is illustrated in Figure 4. We have 6 G I
after optimization. Disjunctive relations may involve an ar- with associated tags.
bitrary number of symbolic values. The code of a symbolic
value may be the bitwise OR of two or more symbolic value
codes. 3.4.2 Selecting a Minimum Encodeable Cover

Enumerating dominance or disjunctive relationships can be Given all the GPIs, we have to select a minimum subset sucl
very time-consuming. Furthermore, finding the reduction in that they cover all the minterrns and form an encodeable cover
cover cardinality that can be accrued via an encoding satisfy- The difference between the output encoding problem and ti
ing each dominance or disjunctive relationship requires an ex- level Boolean minimization is this additional restriction of.
act logic minimization. Moreover, these relationships interact codeability for a selected subset of GPIs. The selection i,
in complex ways and their effects are not simply cumulative, performed by solving a covering problem (c.f. Section 4). Ii
An efficient, exact solution to the output encoding problem the sequel, we describe the meaning of an encodeable cove.
involves the modification of prime implicant generation and Consider a minterm, m, in the original symbolic cover S,
covering strategies that are basic to two-level Boolean mini- longing to the ON-set of v,n. Obviously, in any encoded cove-
mization. the minterm m has to assert the code given to vm, namel%
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Figure 5: Encodeability of Selected GPIs Figure 6: Encodeability Graphs

e( Vm ). Let the selected subset of GPIs be pi, .., PG and let represented as a cycle in the set of dominance relations. Also.
the GPIs that cover m in this selected subset be Pm,1, .., Pm,M. if one picks the equality in choice (3) above, then that implies
For functionality to be maintained, for all minterms m E S, e(outl) D e(out2) and e(outl) D e(out3). In that case, one
the following relation has to be satisfied: cannot satisfy both (1) and (3) simultaneously.

Given a selection of GPIs, we derive a set of constraints via
M Eqn. 1 and construct a graph where each node corresponds

u Ne( t,p,.., j ) = e( t, ) V m (1) to a symbolic value. Directed edges in the graph represent
dominance relations and undirected edges enclosed by (dot-
ted) arcs represent disjunctive relations. Each directed edge

where the r.,, j represent the symbolic values that are con- and arc has a label, corresponding to the minterm produc-

tained in the tag of the GPI pm,,. In Figure 5, we have a ing the constraint represented by the edge or arc. The graph

selection of GPIs for the symbolic cover of Figure 4(a) (all of corresponding to the selected set of GPIs of Figure 5(a) is

whose GPIs are shown in Figure 4(b)). We have selected three shown in Figure 6(a). A directed edge from outI to out2 im-

GPls 110-. 11 - 1 and 000- from Figure 4(b) in Figure 5(a). plies that the code of out1 should dominate the code of out2.

The constraints corresponding to Eqn. 1 for each minterm are The dotted arc around the two undirected edges emanating
shown in Figure 5(b). The minterm 1101 is covered by two from outil implies that the code of outl should be equal to.

selected GPIs. one with a tag (outl, out2) and the other with or be dominated by, the disjunction (bitwise OR) of the codes

a tag (out I, out3). Therefore, Eqn. 1 specifies: of its fanout symbolic values, i.e. out2 and out3. We have
e(outl) C e(out2) I e(out3). outl is called the parent in
the disjunctive arc and out2 and out3 are the siblings in the

e(outl) n e(out2) U e(outl) fl e(out3) = e(outl) disjunctive arc. The disjunctive arc specifies equality or dom-
inance, however, due to other relationships equality may be

for the minterm 1101. Other constraints are specified for the specifically required. In the case of disjunctive dominance tht
remaining minterms. If a minterm is covered by a single GPI edges are undirected, in the case of disjunctive equality the
with the same tag as the minterm, then the constraint specified edges are directed towards the siblings to indicate that the
by the minterm via Eqn. 1 is an identity. parent dominates the siblings.

Eqn. 1 specifies a set of constraints on the codes of the The graph corresponding to a selection of GPIs is encode-
symbolic values, given a selection of GPIs forming a cover. If able and logic functionality is maintained, if four conditions
an encoding can be found that satisfies all these constraints, are met. For each label, one selects either an edge or an arc
then the cover is encodeable. However, a cover may have an with that label. In the case of selecting an arc, all dominance
associated set of constraints that are mutually conflicting, edges covered by the arc (implied by the disjunctive relation-

ship) are also selected. For some selection,

3.4.3 Dominance and Disjunctive Relationships to 1. There should be no directed cycles in the graph.
Satisfy Constraints

The constraints specified by Eqn. I can be satisfied by means 2. The siblings in any disjunctive arc should not have di-

of disjunctive and dominance relations between symbolic val- rected paths between Pach other.

ues. Continuing with our example, to satisfy: 3. No two disjunctive equality arcs can have exactly thf
~same siblings and different parents.

e(outl) n e(out2) U e(outl) n e(ou13) = e'oull) sm ilnsaddfeetprns
4. The parent of a disjunctive dominance (equality) arc

one has three alternatives: should not dominate (any symbolic value/node that dom-
inates) all the siblings in the arc.

1. e(out2) D e(outl) The graph of Figure 6(b), derived from the graph of Figure

2. e(out3) D e(outl) 6(a), satisfies these properties and hence the selection of GPIs
is valid. This implies that we can find an encoding such that

3. e(outl) C e(out2) I e(out3) the optimized cover has 3 product terms.

Given an arbitrary constraint, a set of dominance and dis- Given a constraint specified by Eqn. of the form

junctive relations can be derived such that satisfying any
single relation satisfies the constraint. It is possible that anbfne U andfe U anlfng = a (2"
dominance and disjunctive relationships conflict across a
set of constraints. For example, one cannot satisfy both we have more complex choices than in the equation of Figur(
r(outl) D e(out2) and e(out2) D e(outl). This can be 5(b). To satisfy Eqn. 2, we can satisfy a n b n c = a. In



Eqn. 1 guarantees that each minterm asserts the same out
put combination as it would have in the original encoded, bu
unoptimized, cover. 1110- out1 ut2) out1 -> 11

110 (outO, out2) utl ->01 110- 01 1 We now show that the canceled k-cubes during GPI gen,.
11-1 (outl, out3) OUt2 1 11-1 10 1 ation are not necessary in a minimum solution.
000- (0ut4) out4 -> 00 000 00 1 Theorem 3.3 A minimum cardinality, encodeable cover can

be made up entirely of GPIs.

(a) (b) (C) Proof: Assume that we have a minimum cardinality encod(
able cover with a cube cl that is not a GPI. Let the tag of c1Figure 7: Constructing the Optimized Cover be T. We know a GPI P, exists such that pi D cl and that
the tag of p, is T. We replacing ci with Pi in the cover. Th
obviously does not change the cardinality of the cover. T-

this case, we need to satisfy both b D a and c D a. This corre- minterms contained in P, -cl will be covered by an extra GPi
sponds to a pair of directed edges that have to be selected si- p, and therefore Eqn. 1 for these minterms will be different
multaneously. One can also satisfy anbnc U andnf = a by However, the extra term in the equation (added to the unior
satisfying bnfc U dnf D a. This corresponds to a disjunc- merely represents an extra option in the graph correspondir
tive relationship with nested conjunctive terms. The siblings to the encodeability. Since the original graph was encodeable.
bnc and dnf are called conjunctive nodes. These conjunc- adding edges with the same label as the labels of edges origi-
tive nodes are dominated by b, c and d, f respectively. Con- nally in the graph does not change the encodeability.
ditions 2-4 are required to be satisfied for arcs whose siblings During GPI generation, we discard cubes with tags th;
are conjunctive nodes as well. The symbolic values whose con- contain all the symbolic values. Say that such a cube exists in
junction forms the conjunctive node are called the ancestors a minimum encoded cover. Then, it asserts the output combi-
of the node. As mentioned earlier, the ancestors dominate the nation given by the intersection of the codes of all the symbol
conjunctive node. If all the ancestors dominate a particular values. If this intersection is null (all Os), then the cube can I
symbolic value, then the conjunctive node also dominates that discarded and a smaller cover with the same functionality can
value, which can have some interesting effects. For example, be obtained. If the intersection is not null and the cube asserts
if we have all the ancestors of a conjunctive node dominating some outputs, then it means that in these bits correspondii
the parent of a disjunctive arc that the node is a sibling of, to these outputs, all the codes of the symbolic values have a
then we have a cycle in the graph rendering it unencodeable. We can reduce the codes of all the values, while keeping them

distinct, by discarding these outputs. The cube then asserts
3.4.4 Constructing the Optimized Cover a null output combination and can be discarded. Thus, ti

cube is not required in a minimum cover.
If a selection of GPIs has been made that covers all minterms Hence, we have a minimum cardinality encodeable selection
and is encodeable, then an encoding can be found that satisfies that is made up entirely of GPIs. U
the constraints (see Theorem 3.4). We can now construct an
encoded and optimized cover directly. The cover will contain Thus, if one selects a minimum set of GPIs that cover i
exactly the selected GPIs. For each GPI, the output combina- minterms and have an associated set of constraints by Eqn..
tion in the cover is found by inspecting the tag corresponding that is encodeable, a minimum solution to the encoding prob-
to the GPI. The codes corresponding to all the symbolic val- lem is guaranteed. It remains to be proven that the conditio--
ues contained in the tag of the GPI are intersected (bitwise to the satisfied by the graph for encodeability are necessa
ANDed) to produce the output part. Continuing with our ex- and sufficient. The proof of the following theorem is given.
ample, the GPIs selected with associated tags for the GPIs are the Appendix.
shown in Figure 7(a). These GPIs have an associated graph
that is encodeable (Figure 6(b)) and an encoding satisfying the Theorem 3.4 Conditions 1.4 stated in Section 3.4.3 are na
constraints is given in Figure 7(b). The encoding satisfies dis- essary and sufficient for the graph to be encodeable.
junctive equivalence e(outl) = e(out2) 1 e(out3), rather than
disjunctive dominance e(outl) C e(out2) I e(out3). This is 3.5.1 The Issue of the All Zeros Code
because the dominance relationships e(outl) D e(out2) and
e(outl) D e(out3) have to be satisfied. In Figure 7(c), we have If a code of all zeros is given to a symbolic value, then it
constructed the optimized cover with the GPIs by intersecting possible that one or more GPIs can be dropped in a two-leve.
the codes of symbolic values in the tags of each GPI to obtain implementation, from an otherwise minimum cover. This
the output part. because in a two-level implementation, we are only concern,

with the ON-sets. The procedure presented thus far has n..
3.5 Correctness of Procedure taken this fact into account.

A solution is to perform N + 1 minimizations, N being t--
Proposition 3.1 The selection of a minimum cardinality en- number of symbolic values. The first minimization is as befoi
codeable cover from the GPIs represents an optimum solution In the other N minimizations, we drop all the minterms in t...
to the output encoding problem. ON-set of each of the N symbolic values, one value's ON-set al

a time. We select the best solution resulting from the N -I
In the sequel, we will justify Proposition 3.1. First, we show minimizations. The reason the first minimization has to

that logic functionality is retained via the procedure. performed without dropping any of the minterms is that t..
all zeros code cannot appear in disjunctive relations, since it

Lemma 3.2 Satisfying Eqn. I and constructing the output is dominated by all other codes. Hence, constraining ones-'-
part as in Section 3.4.4 retains logic functionality, to use a code of all zeros may result in a sub-optimal solutic

We can prove the following theorem which gives a conditk.Proof: We construct the output part of a GPI by intersecting when multiple minimizations are not required.
all the codes of the symbolic values in the GPI's tag. That cor-
responds precisely to the intersection (n) term in Eqn. 1. The Theorem 3.5 Given a cover with one or more symbolic oi
output of a minterm in a two-level cover is the disjunction of puts and binary-valued outputs if all minterms in the cot
all the outputs asserted by the cubes that cover the minterm. belong to the ON-set of at least one binary-valued output, thet
This corresponds to the union (U) in Eqn. 1. Thus, satisfying there can be no advantage to using an all zeros code.



Proof: When using an all zeros code, the only advantage ac-
crued is that minterms may be dropped by putting them into
OFF-sets. Any set of dominance and/or disjunctive relation-
ships can be satisfied via codes other than the all zeros code.
In the case of a cover with the property described in the the- 0001 out1 0001 11110
orem, we cannot drop any of the minterms. Hence, for such 00-0 out2 00-0 11101
a cover, we can obtain a minimum cardinality solution via a
single minimization and without using the all zeros code. a 0011 OUt2 0011 11101

0100 out3 0100 11011
1000 out3 1000 11011

3.6 Multiple Symbolic Outputs 1011 out4 1011 10111
The procedure outlined can be generalized to the case where 1111 outs 1111 01111
we have multiple symbolic outputs, all of which have to be
encoded. Each minterm initially has a number of tags equal
to the number of symbolic outputs. For each symbolic output, (a) (b)
the tag corresponds to the symbolic value whose ON-set the
minterm belongs to. Minterm pairs are merged and the opera- Figure 8: Transformation for Output Encoding
tions on the tags are perfor ..ed exactly as before. A k + 1-cube
cancels a k-cube if and only if all of its tags are identical to the
corresponding tags of the k-cube. Cubes with tags such that The canceling rule for GPIs (c.f. Section 3.4.1) is not the same
all the corresponding symbolic values, for all symbolic out- as the canceling rule for PIs. However, as we will show, we
puts, are contained in each tag can be discarded. Thus, the can transform a function with a multiple-valued output into a
GPIs can be generated. We have separate graphs representing function with multiple binary-valued outputs such that the PIs
the encoding constraints for each symbolic output. Given a for this new multiple-output function have a one-tc-one corre-
selection of GPIs, these graphs are constructed and checked spondence with the GPIs of the original function. In Figure 8.
for encodeability exactly as before. For a selection of GPIs to the function with a symbolic/multiple-valued output of Figure
be valid, all the graphs have to be encodeable. 1(b) has been duplicated in Figure 8(a). Each symbolic value

The procedure can be easily generalized to functions with has been replaced by an output combination to produce the
both symbolic and binary-valued outputs. binary-valued multiple-output function of Figure 8(b). The

number of outputs is equal to the number of symbolic values.
Each symbolic value has an output combination of all is ex-

4 Solving the Covering Problem cept for one 0 in a unique identifying position. These outputs
perform the function of the output tags in GPI generation.

4.1 Introduction Lemma 4.1 The PIs of the function obtained via the trans-

The classical covering problem of two-level Boolean minimiza- formation of Figure 8 are the GPIs of the original funct:o.
tion involves the selection of a minimum set of prime impli- with the symbolic output.
cants (Pis) that form a cover for a logic function. In output
encoding, we have an additional restriction on the selected Proof: The set of outputs asserted by any cube in the ne%%
generalized prime implicants (GPIs) in that they have to form binary-valued multiple-output function is the set of symbolic
an encodeable cover. values not in the tag of the corresponding cube in the origina

In Section 3.4.1, we first describe how techniques that gener- function. During PI generation for the binary-valued function
ate all the the prime implicants of binary-valued output func- a cube, cl, cancels another cube, c2, only if cl covers c2 and
tions can be used to generate all the GPIs for functions with the outputs asserted by el are the same as the outputs asserted
multiple-valued outputs. In Section 4.3, we review strategies by C2 . This implies that the set of symbolic values in the tag
for solving the covering problem in two-level Boolean mini- of the two corresponding cubes in the original function ar(
mization. In Section 4.4, we describe our approach to solv- identical and cl would have canceled c2 during GPI generation
ing the covering problem with associated encodeability con- Finally, cubes in the binary-valued function with a null output
straints. combination are discarded. This corresponds to discarding

cubes with tags that contain all the symbolic values. 0

4.2 Reduced Prime Implicant Table Genera- Thus, via this transformation we can make use of efficient
tion techniques for prime implicant generation to generate GPIs

Once the GPIs have been generated, the added outputs arf
Many techniques for determining all the prime implicants discarded, since we have to solve a different covering problen
(Pis) of single and multiple-output logic functions have been from the classical covering problem. The output tags for eact
developed in the past (e.g. (3][8]). An algorithm based on the GPI are constructed by finding all the symbolic values who&
recursive decomposition of a unction followed by a pairwise ON-sets intersect the GPI.
consensus operation has been reported [1]. This algorithm was
improved upon in the program McBOOLE [2]. Other tech-
niques have been reported as well [6]. These techniques not 4.3 The Classical Covering Problem
only efficiently generate PIs without duplication of effort but A branch-and-bound solution [6] to the minimum cover prob-
also create what is called a reduced prime implicant table. The 1em involves the following steps (columns correspond to col
prime implicant table of the Q-M algorithm is such that each lections of minterms and rows correspond to Pls):
column in the table corresponds to a minterm of the function
and each row to a P1. In a reduced prime implicant table, how- 1. Remove columns that contain other columns and remov,
ever, each column corresponds to a collection of minterms (i.e. rows which are contained by other rows. Detect essentia
a larger subspace), all of which are covered by the same set of rows - a column with a single 1 identifies an essential roy
PIs. Thus, using the algorithms of [6] for example, rather than - and add these to the selected set. Repeat until no nev
the Q-M method can lead to a much more efficient creation of essential elements are detected.
the prime implicant table.

We cannot directly use techniques such as those of [61on 2. If the cardinality of the selected set exceeds the best solu-
functions with multiple-valud outputs to generate all G'PIs. tion thus far, return from this level of recursion. If thern
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are no elements left to be covered, the selected set is the
best solution recorded thus far. EX I inp[minIivalt Iou gpi prod enTTPUC

I I I I [ time
3. Heuristically select a branching PI, i.e. row. exl 2 4 4 1 § 3 2 0.1m

4. Add this row to the selected set and recur for the sub- ex2 4T -M -- - -T 6 W 0.9m

itoteslcese.ex6 1 ___ --- =__T ___r_ 1 6 104table that results from deleting the row and all columns ex 4 1 2 194 1 T 1
that are covered by this row. Then, recur for the sub- ex4T 8T- 11 X -0 0 T 95 W M
table that results from deleting this row without adding ex5' 1- 213 2U 1 _ - - >lh
it to the selected set. e_ x6 .12 410 32 0 > I10'

In [6], a lower bounding strategy based on a maximal inde-
pendent set heuristic was proposed. In Step 2, a maximal set Table 1: Results Using Output Encoding Algorithm
of columns, all of which are pairwise disjoint is found using a
straightforward, greedy algorithm '. Since each column must
be covered and all the columns in the maximal independent of edges in cycle A and B. In this case, two GPIs are required
set do not share any row(s), the cardinality of the maximal in- to break both cycles - these two cycles are deemed disjoint
dependent set is a lower bound on the number of rows required Similarly, assume we have two separate instances of direct(
to complete the cover. At Step 2, the recursion is bounded if paths between the siblings of a disjunctive arc. Assume th,
the cardinality of the selected set at Step 2 plus the cardinality the two sets of edges in the two paths have disjoint sets of
of the maximal independent set equals or exceeds the current labels, and no unselected GPI exists that covers the pair ,nf
best solution. minterms corresponding to any pair of edges in the two path

Then, two GPIs are required to remove the two violation
4.4 Covering with Encodeability Constraints We can also have disjoint violations of Conditions 3 and 4 of

Theorem 3.4.
The covering algorithm for output encoding is a modification The heuristic selection of a GPI to add to the selected set
of the algorithm described in the previous section. The re- Step 2 is performed by selecting a GPI that covers a maxim
quired modifications are described in the sequel. number of minterms corresponding to the labels of edges that

In Step 1, a row (GPI) is deemed to contain another row are involved in violations of the encodeability conditions.
(GPI) only if (1) the tags of the two GPIs are identical or (2)
the tag of the first GPI is a subset of the tag of the second.
Condition 2 cannot occur in the initial table, but may occur
lower in the recursion after some columns have been deleted. 5 Experimental Results
The lower bounding criterion at Step 3 uses the cardinality
of the maximal independent set of columns. This bound is We present preliminary experimental results obtained on
looser than in classical covering because even if a cover can set of examples. In our current implementation, GPIs are
be constructed with a number of elements equal to the lower generated via the procedures of Section 3.4.1.
bound, it may not be encodeable. The results obtained using the output encoding algorith

After obtaining a selected set that covers all elements, we are summarized in Table 1. The number of inputs to t
perform an encodeability check. If the cover is encodeable, function (inp), the number of minterms in the original function
the solution is declared as the best recorded until then. If not, (min), the number of symbolic values (val), the number of
another br;-nch-and-bound step is performed to find the mian- binary-valued outputs (out), the number of GPIs generat,
mum number of GPIs (rows) which when added to the selected (gpi), the number of product terms in the minimized rest
set renders it encodeable. We are only concerned with making (prod), the number of encoding bits (enc), and the CPU time
the cover encodeable in this step, since all the minterms have in minutes required for GPI generation, covering and encodinz
already been covered. GPIs during this branch-and-bound on a microvax-III (CPU time) are given for each example. T
step are selected from the current sub-table in the recursion. covering problem could not be solved in less than a CPU-ho
We now describe the second branch-and-bound step. for example exS. All the GPIs could not be generated due

to memory limitations for example ex6. However, examples
1. If the selected set is encodeable, then the selected set is ex3 and ex4 which have upto 20 symbolic values have be

declared as the best encodeable solution thus far. If not, optimally encoded. An exhaustive search method is not vial
the cardinality of the selected set plus a lower bound on for these examples.
the required number of rows to produce an encodeable set Using the transformations of Section 4.2 prior to prime irn-
is checked to see if it equals or exceeds the best encodeable plicant generation will increase the size of the examples th
solution obtained thus far. If so, return from this level of can be handled, since a memory-efficient reduced prime imp
recursion. cant table can be directly constructed.

2. Heuristically select a branching GPI i.e. row.

3. Add this row to the selected set, and recur for the sub- 6 Conclusions
table that results from deleting this row. Then, recur
after deleting the row without adding it to the current In this paper, we presented an exact algorithm for the proble
set. of output encoding.

A lower bound on the number of GPIs required to render the The procedure described is, on the average, much more ef-
graph encodeable is computed by finding the number of dis. ficient than a straightforward, exhaustive search procedure to
joint violations of the encodeability conditions of Theorem 3.4. solve this problem. A novel minimization procedure of prir

Consider the case of there being two cycles in the graph implicant generation and covering that operates on multip
such that the edges in cycle A have different labels from all the valued outputs, rather than binary-valued outputs, was used
edges in cycle B. Further, no unselected GPI should exist that to solve the encoding problem.
contains both minterms corresponding to the labels of any pair Preliminary experimental results indicate that this a

proach is viable for larger circuits than an exhaustive sear
'Finding a maximum independent set of columns is itself NP. method. Computationally efficient heuristic approaches based

complete. on the exact algorithms are a subject of current research. I
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A Proof of Theorem 3.4 a composite node is formed by merging the siblings, parent.
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Abstract

In this paper a fast algorithm for computing the capacitance of a
complicated 3-D geometry of ideal conductors in a uniform dielectric
is described. The method is an acceleration of the standard integral
equation approach for multiconductor capacitance extraction. These
integral equation methods are slow because they lead to dense matrix
problems which are typically solved with some form of Gaussian elim-
ination. This implies the computation grows like n3 , where n is the
number of tiles needed to accurately discretize the conductor surface
charges. In this paper we present a preconditioned conjugate-gradient
iterative algorithm with a multipole approximation to compute the
iterates. This reduces the complexity so that accurate multiconduc-
tor capacitance calculations grow as nm where m is the number of
conductors.

1 Introduction

In the design of high performance integrated circuits, there are many cases
where accurate estimates of the capacitances of complicated three dimen-

sional structures are important for determining final circuit speeds or func-
tionality. Two examples are complicated three-dimensional dynamic mem-

ory cells and the three-dimensional chip carriers commonly used in main-

frame computers. In these problems, capacitance extraction is made tractable
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by assuming the conductors are ideal, and are embedded in a piecewise-
constant dielectric medium. Then to compute the capacitances, Laplace's
equation is solved numerically over the charge free region with the conduc-
tors providing boundary conditions.

Although there are a variety of numerical methods that can be used to
solve Laplace's equation. the technique that is typically used in three di-
mensions is the integral equation approach[ruehli73, rao84, ning88]. In this
approach. the surfaces or edges of all the conductors are broken into small
tiles. It is assumed that on each tile i, a charge, qi, is uniformly or linearly
distributed. The potential on each tile is then computed by summing the
contributions to the potential from all the tiles using Laplace's equation
Green's functions. In this way a matrix of potential coefficients, P, relating
the set of n tile potentials L.id the set of n tile charges is constructed, and
must be solved to compute capacitances. Typically, Guassian elimination
or Choleskv factorization is used to solve the equation, in which case the
number of operations is order n3 . Clearly, this approach becomes compu-
tationally intractable if the number of unknowns exceeds several hundred,
and this limits the size of the problem that can be analyzed to one with a
few conductors.

In this paper we present an algorithm for computing capacitance whose
complexity grows as mn where m is the number of conductors. Our algo-
rithm, which is really the pasig together of three well-known algorithms
[rohklin86]. is presented in three sections. To begin, in the next section one
of the standard integral equation approaches is briefly described, and it is
shown that the algorithm requires the solution of an n x n dense symmetric
matrix. Then, in Section 3, a preconditioned conjugate-gradient algorithm
is described, and it is shown to reduce the complexity of the calculation to
order inn 2 . In Section 4, it is shown that the conjugate-gradient algorithm
only requires the evaluation of a potential field from a charge distribution,
and this can be computed in order n time using a multipole algorithm. In
Section 5, some preliminary experimental results are given, and we present
our conclusions and acknowledgments.

2 The Integral Equation Approach

Consider a system of m ideal conductors embedded in a uniform lossless
dielectric medium. For such a system, the relation between the m conductor
potentials, denoted by P E Rm, and the m total charges on each conductor,

2



denoted by 4 E Rm, is given by 4 = CP, where C E R-x- is referred to as
the capacitance matrix. The th column of C can be calculated by solving
for the total charges on each of the conductors when the ith conductor is at
unit potential, and all the other conductors are at zero potential. Then the
charge on conductor j, 4j, is equal to Cij.

There are a variety of approaches for numerically computing the conduc-
tor charges given a set of conductor potentials, and we will focus on integral
equation methods[ruehli73, rao84, ning88], as they are efficient when ap-
plied to problems with ideal conductors in a uniform dielectric medium.
The method exploits the fact that the charge is restricted to the surface of
the conductors, and rather than discretizing all of free space, just the sur-
face charge on the conductors is discretized. The potential is related to the
discretized surface charge through integrals of a Green's functions.

Let the surfaces of a collection of m conductors in free space be dis-
cretized into a total of n tiles. The potential at the center of the ith tile
would be the sum of the contributions to the potential from the charge
distribution on every tile. That is,

P. (1)

where , is the position of the center of tile i, r is the position on the surface
of tile j, pi is the potential at i, q(r) is the position dependent charge
density on the surface of the jh tile, and I rI denotes the Euclidian length of
r. Note that the integral in (1) is the free space Green's function multiplied
by the charge density, integrated over the surface of the j4 tile, and that as
the distance between tile i and tile j becomes large compared to the surface
area of tile j, the integral reduces to where qj is the total charge on
tile j.

There are several approaches to simplifying (1), the simplest is the
"point-matching" approximation in which it is assumed that the charge
is distributed uniformly on the tile surface(rao84]. In that case (1) can be
simplified to

n 1

Pi da (.j=l -f

where q, is the total charge on tile j, and a1 is the surface area of tile j.
When applied to the collection of n tiles, a dense linear system results,

Pq = p (3)
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whiere P C R'": q. pE R and

P, = P:,

_ 1 da + -a (4)_
2{a,Jtie, I 1 da (4) tl. -f
{ .I r-r,lI itl,I r-r "(4

Note that q and p are the vectors of tile charges and potentials rather than

the conductor charge and potential vectors, 4 and P mentioned above. In (4),

the potential coefficients, Pij, have been "symmetrized" by averaging for sev-
eral reasons: the physical system is symmetric, the symmetrized equations
have been shown to produce more accurate results for a given discretization,
and a symmetric matrix problem is more easily solved. The dense linear

system of (3) can be solved, typically by some form of symmetric Gaussian
elimination, to compute tile charges from a given set of tile potentials. To
compute the j~' column of the capacitance matrix, (3) must be solved for

q. given a p vector whose entries p, are set equal to one if tile i is on the
j" conductor. and zero otherwise. Then the ijth term of the capacitance
matr'x iq r-n-,-od hv -imming all the charges on the j'h conductor. i.e.

C'. = ZkEC~ondutor. qk,

3 Using Preconditioned Conjugate-Gradient

In order to solve for a complete m x m capacitance matrix, the n x n sym-

metric matrix of potential coefficients, P, must be factored once, usually
into P = LLT , and this requires order n3 operations. Then, as there are
m conductors, the factored system must solved m times with m different
right-hand sides. and this requires order inn2 operations. Since n is the
total number of tiles into which the conductor surfaces are cut, m is neces-

sarilv much less than n. Therefore, the n 3 factorization dominates for large
problems.

This suggests that iterative methods might be more efficient than direct
factorization for solving the m charge distribution problems. In particu-

lar, as the matrix is symmetric and positive definite, the conjugate-gradient

(CG) algorithm is a natural choice[golub83]. Unfortunately, the CG algo-
rithm can converge slowly when applied to the matrix of potential coef-
ficients. particularly when the problem contains widely separated pairs of
very closely spaced tiles. To accelerate the convergence of CG, an attempt
is made to factor most of the part of the problem associated with the closely
spaced tiles directly. To accomplish this, the smallest cube containing the
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entire problem is uniformly divided into a large number of cubes, typically
into as close to ' cubes as possible. The piece of the potential coefficient
matrix associated with the tile interactions inside a cube is then factored
directly and used as a preconditioner to accelerate the CG algorithm. If the
p and q vector in (3) are reordered so that tiles contained in a given cube are
ordered contiguously, the potential coefficients representing the interaction
between tiles in a given cube will be blocks on the diagonal of P. That is,
P = Pntracube + Pintercube where Pitracube is a block diagonal matrix.

The CG capacitance extraction algorithm with the Pintracube precondi-
tioner (PCG) is as follows:

Algorithm 1: Preconditioned CG capacitance extraction algorithm

Setup Phase.
Divide all the conductors into a total of n tiles.
Divide the tiles into cubes, and reorder to

make Pntra. block diagonal.
Compute the Potential Coefficient kfatrix.

for i= 1 to i = n

for)= 1 to = n
Compute P, from (4).

Factor Pracu ,.
Loop Through all the Conductors.

for k = 1 to rn
if tile i is on conductor k, set pi = 1.
else p, = 0.
Use PCG to solve Pq = p.
for I = 1 to m Cklt = kconductor qk.

Preconditioned CG (PCG).
The Setup.

r = p, q = 0.

Conjugate- Gradient Loop.
Repeat

Solve PintracubeZ = r.
if the first iteration /3 = 0.
else )3 = zTr/(zTr)pre,.
S= z + z.
y = Pt.
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q =q + ox.
r r - ay.

Until Converged

4 Acceleration with a Multipole Algorithm

As can be seen from examining the computation ii Algorithm 1, m problems
must be solved iteratively, and the major cost is computing the matrix P,
and in each iteration forming the product Pz, both of which are order n2 .
This implies that computing the capacitance matrix with Algorithm 1 is
order mn -.and may not be much more efficient than direct factorization if
the ratio of tiles to conductors is low.

An approach for reducing the cost of forming P and computing Px in the
CG algorithm can be derived by recalling that if x is thought of as a charge
distribution. Pr is the potential due to that charge distribution. To see
how this helps simplify the computation Px, consider two widely separated
cubes. each with k tiles. Computing the contributions to the potentials at
the center of each of the tiles in the first cube due to the k tile charges in
the second cube from (4) requires k 2 calculations. if all the charges in the
second cube are positive, then the k potential contributions to the first cube
can be computed approximately in k operations. This is done by assuming
the charges in the second cube contribute to potential in the first cube like
a point charge equal to the sum of the charges in the second cube located at
a -center of mass". Note that the accuracy of the approximation improves
as the :cp=:.ticn between cubes increases.

There are a collection of algorithms based on the above idea, often re-
ferred to as multipole algorithms[rohklin86, katzenelson88, zhao87]. The de-
tails of the multipole algorithm we used are well described in[greengard87j,
and only a very basic outline will be given here. In general, the potential, 0,
due to a cube of point charges at a location outside the radius of the cube
is given by the multipole expansion,

c c O 
A f - n

n= 0 m n r

where r, 0 and o are the spherical coordinates of the evaluation location,
1'~, (9, j is *,,,t spherical harmonic, and M' is the multipole coefficient.
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which can be computed from the charge in the cube from

M'= F qY,,_(i (6)

where p,, ac,. and 3i are the spherical coordinates of the i14 charge. If
th(- evaluation location is well outside the cube, then the potential can be
accurately computed using just a few terms of the multipole expansion.

Consider a collection of cubes containing charges and one cube, well
separated from the others, containing several locations at which the potential
must be evaluated. It is possible to combine all the multipole expansions
for the cubes containing charges into a single local expansion from which
the potential at the evaluation points in the cube can be computed quickly.
The local expansion is given by

, = LIYn i(0, )r n (7)
n=O m=-n

where r. t and are the spherical coordinates of the evaluation location,
and LT are the local expansion coefficients, which are computed from the
combination of multipole expansions for the cubes containing charges. Good
accuracy can be achieved with a few terms of the local expansion.

Truncated multipole and local expansions can be used to compute n po-
tentials at n evaluation points in order n operations, provided the charges
and evaluation points are reasonably separated. To ensure adequate separa-
tion and avoid excess calculation, careful hierarchical shifting and combining
of both the multipole and local expansions is necessary, as is well described
in [greengard87]. With the computation organized in this manner, the mul-
tipole algorithm can be used to compute most of Px in Algorithm 1, except
the part due to interactions between tiles in a given cube, and the tiles
of each cube's nearest neighbors. This implies that in Algorithm 1, if the
multipole algorithm is used to compute Pz, most of P need not be formed
explicitly. Note also that the part that must be computed explicitly includes
P,ntracube, therefore the multipole accelerated PCG algorithm can still use
Pntracube as a preconditioner. Finally, note that using the multipole algo-
rithm to compute Px implies that both n 2 steps of Algorithm 1, forming all
of P and computing Pz, can be removed.



Fu: '-e 1: Bus Structure Example with Six Conductors

5 Results and Conclusions

-i e m'i: pole accelerated PCG algorithm was implemented and tested on
. :e bus structure (Figure 1), with 2, 4, and 6 conductors. In Table

v we report the total number of tiles resulting from the conductor surface
d:scretization. the number of cubes into which space was divided, the time
to compute capacitance using direct factorization, PCG, and multipole ac-
celerated PCG (MPCG). the number of iterations to achieve convergence
A"nh PCG and NIPCG, and the relative error introduced by the multipole

appro.imation.
Much additional work is under way to improve the efficiency of our

\IPCG-based capacitance extraction program, and CPU time comparisons
for an efficient implementation will be presented at the conference. Future
research includes extending the approach to piecewise-constant dielectrics
and problems with ground planes.

The authors would like to thank David Ling and Albert Ruehli of the
I.B.M. T. J. Watson Research Center for the many discussions that led to the
approach presented here, as well as their help along the way. In addition we
would like to acknowledge the helpful discussions with Jacob Katzenelson,
and finally we thank the many members of the MIT Custom Integrated
Circuits group for their help and encouragement.

This work was supported by the Defense Advanced Research Projects



2 Cond. 4 Cond. 6 Cond.
tiles 216 720 1512

cubes 64 64 64
direct time 16.7 258 1810
PCG time 15.7 218 1055

MPCG time 15 123 490
PCG iters 5 7 8

NIPCG iters 5 9 10
MPCG rel. err. 0.002 0.001 0.002

Table 1: Comparison of Extraction Methods

Agency contract 'N00014-87-K-825. and grants from IBM and Analog De-
vices.

References

"ol'ibS3' G. Golub and C. Van Loan, Matrix Computations. Johns
Hopkins University Press, Baltimore, Maryland, 1983.

greengardS7] L. Greengard. V. Rohklin, "A Fast Algorithm for Particle
Simulations,"~ J. Comp. Phys., Vol 73, pp. 325-348, 1987.

FkatzenelsonSSI J. Katzenelson, Computational Structure of the NV-body
Problem, Mass. Inst. of Tech., Artificial Intelligence Lab-
oratorv. Al Memno 1042. April 1988.

ning.R Z.-Q. Ning and P. M. Dewilde, "SPIDER: Capacitance Mod-
eling for VLSI Interconnections," IEEE Transactions on

Computer-Aided Design, vol. CAD-7, No. 12, December
1988.

[rao84) S. Rao. T. Sarkar, R. Harrington, "The Electrostatic Field
of Conducting Bodies in Multiple Dielectric Media," IEEE
Transactions on Mficrowave Theoryj and Techniques, vol.
MTT-32, No. 11, November 1984.

9



jrohklin86, V. Rohklin, "Rapid Solution of Integral Equation ,f Classi-
cal Potential Theory," J. Comput. Phys., Vol. 60, pp. 187-
207, 1985.

[ruehli73] A. Ruehui and P. A. Brennen, "Efficient capacitance calcula-
tions for three-dimensional multiconductor systems," IEEE
Transactions on Microwave Theory and Techniques, vol.
NITT-21, No. 2, pp. 76-82, February 1973.

rzhaoS7] F. Zhao. An O(f) algorithm for three-dimensional N-body
simulations, Master's thesis, Mass. Inst. of Tech., Dept. of
Elec. Eng. and Comp. Sci., October 1987.

10


